Tactics of mine ventilation failure restoration toward safe atmosphere control

Authors: Ushakov V. K.

Safe atmosphere control in mines is aimed at improvement of reliability and operating efficiency (ROE) of mine ventilation systems (MVS). The early tactics of ROE improvement is recovery of an MVS. In the framework of development of a tactics to select a rational failure restoration method, some rules were formulated and classified into two groups: (1) tactical rules for random failure restoration and (2) tactical rules for degradation failure restoration. The first group rules administer selection of repair procedures for MVS components broken by the moment of failure (repair of broken ventilation structures, removal of rockfalls in tunnels, actuation of broken-down main fans), with simultaneous detection of imperfect repair of broken elements. The degradation failure restoration rules govern selection of measures on erection of new ventilation structures, widening of underground excavation or installation of new support systems, or boosting of main ventilation fans. In compliance with the regulatory documents, the rule of selecting branches–drip legs of MVS segments is chosen as a tactical measure. In order to reduce the number of the required measures, the rules based on heuristical principle of minimizing the cross-effect of the farthest branches are applied. The formulated tactical rules and the related matrices of the influence branches make it possible to identify both the sites and the priority of tactical measures to be implemented. The increase in the recoverability of MVS results in the enhanced safety of mining operations by the criterion of airing, and in the mine personnel comfort.

Keywords: mine personnel safety and comfort, mine ventilation system, reliability and efficiency, principle of rational tactics of serviceability recovery, selection of tactical measures, tactical rules, matrices of influence branches.
For citation:

Ushakov V. K. Tactics of mine ventilation failure restoration toward safe atmosphere control. MIAB. Mining Inf. Anal. Bull. 2021;(4):5-15. [In Russ]. DOI: 10.25018/0236_ 1493_2021_4_0_5.

Acknowledgements:
Issue number: 4
Year: 2021
Page number: 5-15
ISBN: 0236-1493
UDK: 622.4:622.019.3
DOI: 10.25018/0236_1493_2021_4_0_5
Article receipt date: 10.08.2020
Date of review receipt: 07.12.2020
Date of the editorial board′s decision on the article′s publishing: 10.03.2021
About authors:

V.K. Ushakov, Dr. Sci. (Eng.), Professor, National University of Science and Technology «MISiS», 119049, Moscow, Russia, e-mail: vk.ushakov@misis.ru.

 

For contacts:
Bibliography:

1. Puchkov L. A., Kaledina N. O. Kobylkin S. S. System solutions for ensuring methane safety of coal mines. Gornyi Zhurnal. 2014, no 5, pp. 12—17. [In Russ].

2. Kolikov K. S., Kaledina N. O., Kobylkin S. S. Department of «Safety and Ecology of Mining Production»: Past, present and future. Gornyi Zhurnal. 2018, no 3, pp. 21—28. [In Russ]. DOI: 10.17580/gzh.2018.03.04.

3. Ushakov V. K. Dynamic hierarchical segmentation of mine ventilation systems in modeling methods of improvement of aerological safety. MIAB. Mining Inf. Anal. Bull. 2019, no 12. 2019, pp. 76—85. [In Russ]. DOI: 10.25018/0236-1493-2019-12-0-76-85.

4. Skopintseva O. V., Balovtsev S. V. Evaluation of the influence of aerodynamic aging of production on aerological risks on coal mines. MIAB. Mining Inf. Anal. Bull. 2020, no 6-1, pp. 74—83. [In Russ]. DOI: 10.25018/0236-1493-2020-61-0-74-83.

5. Balovtsev S. V. Aerological risk assessment in working areas of gas and dust explosionhazardous coal mines. Gornyi Zhurnal. 2015, no 5, pp. 91—93. [In Russ]. DOI: 10.17580/ gzh.2015.05.19.

6. Skopintseva O. V., Vertinskiy A. S., Ilyakhin S. V., Savel'ev D. I., Prokopovich A. Yu.Substantiation of efficient parameters of dust-controlling processing of coal massif in mines. Gornyi Zhurnal. 2014, no 5, pp. 17—20. [In Russ].

7. Alper G. Ventilation requirements for today’s mechanized underground metal mines. International Journal of Advanced Research in Engineering. 2018. Vol. 4. No 1. Pp. 7—10. DOI: 10.24178/ijare.2018.4.1.07.

8. Pritchard C. Methods to improve efficiency of mine ventilation systems. Available at: https://www.cdc.gov/NIOSH/mining/UserFiles/works/pdfs/mtieom.pdf.

9. Bosikov I. I., Guryeva E. V. The analysis of aerodynamic parameters and practical tasks for effective inspection of mines. Science Prospects. 2018, no 9 (108), pp. 96—99.

10. Kaiyan C., Junhong S., Fubao Z., Renwei Z., He S., Hongmei Z. Optimization of air quantity regulation in mine ventilation networks using the improved differential evolution algorithm and critical path method. International Journal of Mining Science and Technology. 2015. Vol. 25. No 1. Pp. 79—84. DOI: 10.1016/j.ijmst.2014.11.001.

11. Castilla-Gomez J., Herrera-Herbert J., Campillos-Prieto A. Modelling and optimization of a ventilation network in underground mines. 15th International Multidisciplinary Scientific GeoConference SGEM 2015. 2015. Book 1. Vol. 3. Pр. 469—476. DOI: 10.5593/SGEM2015/ B13/S3.061.

12. Musurmanov E. Sh. Structural analysis of mine and mine ventilation management.Internauka. 2017, no 11-1 (15), pp. 71—74. [In Russ].

13. Mashintsov E. A., Kotlerevskaya L. V., Krinichnaya N. A. Coal mine ventilation control. Izvestiya Tul'skogo gosudarstvennogo universiteta. Tekhnicheskie nauki. 2015, no 5-2, pp. 188—193. [In Russ].

14. Ushakov V. K. Identification algorithm of diagonal branches in mine ventilation systems for higher safety in operation. MIAB. Mining Inf. Anal. Bull. 2020, no 12, pp. 147—155. [In Russ]. DOI: 10.25018/0236-1493-2020-12-0-147-155.

15. Prikaz Rostekhnadzora ot 19.11.2013 № 550 (red. ot 25.09.2018) «Ob utverzhdenii Federal'nykh norm i pravil v oblasti promyshlennoy bezopasnosti «Pravila bezopasnosti v ugol'nykh shakhtakh» (Zaregistrirovano v Minyuste Rossii 31.12.2013 № 30961) [Order of Rostechnadzor of 19.11.2013 No. 550 (ed. of 25.09.2018) «On Approval of Federal Norms and Rules in the field of Industrial safety «Safety Rules in coal Mines» (Registered with the Ministry of Justice of the Russian Federation on 31.12.2013 No. 30961)]. Available at: https://consultant.ru (accessed 31.07.2020). [In Russ].

16. Batugin A. S., Kobylkin A. S., Musina V. R. Effect of geodynamic setting on spontaneous combustion of coal waste dumps. Eurasian Mining. 2019. No 2. Pp. 64—69. DOI: 10.17580/ em.2019.02.14.

17. Kobylkin S. S., Kobylkin A. S. Three-dimensional modeling during engineering calculations on the tactics of mountain rescue operations. Gornyi Zhurnal. 2018, no 5, pp. 82—85. [In Russ]. DOI: 10.17580/gzh.2018.05.13.

18. Wallace K., Prosser B., Stinnette D. The practice of mine ventilation engineering. International Journal of Mining Science and Technology. 2015. Vol. 25. No 2. DOI: 10.1016/j. ijmst.2015.02.001.

19. Gilmore R. C., Marts J. A., Brune J. F., Saki, S., Bogin G. E., Grubb J. W. Simplifying CFD modeling of longwall gobs with a modular meshing approach. Mining Engineering. 2015. Vol. 67. No 3. Pp. 68—72.

20. Hui L., Joyce A., Landry M. J., Li X. Vortices and waves in light dark matter. [arXiv:2004.01188[astro-ph.CO]].

21. Baggioli M., Landry M. J. Effective field theory for quasicrystals and phason dynamics [arXiv:2008.05339 [hep-th]].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.