Bibliography: 1. Acharya B. S., Kharel G. Acid mine drainage from coal mining in the United States — An overview. Journal of Hydrology. 2020, vol. 588. DOI: 10.1016/j.jhydrol.2020.125061.
2. Burmistrov A. A., Samsonov A. A., Tel'nov A. E. Ecological and economic aspects of the development of natural and related man-made ore deposits on the example of the Dzhidinsky tungstenmolybdenum plant, Republic of Buryatia. Moscow University Bulletin. Series 4. Geology. 2024, no. 2, pp. 54—64. [In Russ]. DOI: 10.55959/MSU0579-9406-4-2024-63-2-54-64.
3. Rybnikova L. S., Rybnikov P. A., Navolokina V. U. Evaluation of the efficiency of acid mine water purification (using the example of copper pyrite mines of the Middle Urals). Journal of Mining Institute. 2024, vol. 267, pp. 388—401. [In Russ].
4. Abramov S. M., Tejada J., Grimm L., Schädler F., Bulaev A., Tomaszewski E. J., Byrne J. M., Straub D., Thorwarth H., Amils R., Kleindienst S., Kappler A. Role of biogenic Fe (III) minerals as a sink and carrier of heavy metals in the Rio Tinto, Spain. Science of the Total Environment. 2020, vol. 718, article 137294. DOI: 10.1128/aem.02290-21.
5. Fetisova N. F. Investigation of the forms of metal migration in rivers affected by mine waters of the Kizelovsky coal basin. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2021, no. 1, pp. 144—152. [In Russ]. DOI: 10.18799/24131830/2021/1/3007.
6. Broshears R. E., Runkel R. L., Kimball B. A., McKnight D. M., Bencala K. E. Reactive solute transport in an acidic stream: experimental pH increase and simulation of controls on pH, aluminum, and iron. Environmental Science & Technology. 1996, vol. 30, no. 10, pp. 3016—3024.
7. Maksimovich N. G., P'yankov S. V. Kizelovskiy ugol'niy basseyn: ekologicheskie problemy i puti resheniya [Kizel coal basin: environmental problems and solutions], Perm, PGNIU, 2018, 288 p.
8. Imaykin A. K., Imaykin K. K. Changes in hydrogeological conditions of the Shumikhinsky coal deposit (pre-urals) as a result of underground mining. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2022, vol. 333, no. 7, pp. 64—75. [In Russ]. DOI: 10.18799/24131830/2022/ 7/3482.
9. Kupka D., Pállová Z., Horňáková A., Achimovičová M., Kavečanský V. Effluent water quality and the ochre deposit characteristics of the abandoned Smolník mine. East Slovakia. Acta Montanistica Slovaca. 2012, vol. 17, no. 1, pp. 56—64.
10. Fischer W., Schwertmann U. The formation of hematite from amorphous iron (III) hydroxide. Clays and Clay Minerals. 1975, vol. 23, pp. 33—37.
11. Supattarasakda K., Petcharoen K., Permpool T., Sirivat A., Lerdwijitjarud W. Control of hematite nanoparticle size and shape by the chemical precipitation method. Powder Technology. 2013, vol. 249, pp. 353—359.
12. Ivashov P. V. Geochemistry and thermodynamics of the epigenetic process of formation of pyrite nodules. Biogeokhimiya zony gipergeneza: sbornik nauchnykh statey [Biogeochemistry of the hypergenesis zone: collection of scientific articles], Moscow, 1971, pp. 3—29.
13. Peiffer S. The reaction of hydrogen sulphide with ferric oxides — some conceptual ideas on its significance for sediment—water interactions. Environmental Chemistry of Lakes and Reservoirs. ACS Advances in Chemistry Series. 1994, vol. 237, pp. 371—390.
14. Lee J.-E., Kim Y. A quantitative estimation of the factors affecting pH changes using simple geochemical data from acid mine drainage. Environmental Geology. 2008, vol. 55, no. 1, pp. 65—75. DOI: 10.1007/s00254-007-0965-6.
15. Yu J. Y., Heo B., Choi I., Cho J., Chang H. Apparent solubilities of schwertmannite and ferrihydrite in natural stream waters polluted by mine drainage. Geochimica et Cosmochimica Acta. 1999, vol. 63, no. 19/20, pp. 3407—3416.
16. Da Silva E. F., Patinha C., Reis P., Fonseca E. C., Matos J. X., Barrosinho J., Oliveira J. M. S. Interaction of acid mine drainage with waters and sediments at the Corona stream, Lousal mine (Iberian Pyrite Belt, Southern Portugal). Environmental Geology. 2006, vol. 50, no. 7, pp. 1001—1013. DOI: 10.1007/s00254-006-0273-6.
17. Munk L., Faure G., Pride D. E., Bigham J. M. Sorption of trace metals to an aluminum precipitate in a stream receiving acid rock-drainage; Snake River, Summit County, Colorado. Applied Geochemistry. 2002, vol. 17, no. 4, pp. 421—430. DOI: 10.1016/S0883-2927(01)00098-1.
18. Sánchez-España J., López-Pamo E., Santofimia E. P., de Andrés J.-R., Martin-Rubi J.-A. The removal of dissolved metals by hydroxysulphate precipitates during oxidation and neutralization of acid mine waters, Iberian Pyrite Belt. Aquatic Geochemistry. 2006, vol. 12, no. 3, pp. 269—298. DOI: 10.1007/s10498-005-6246-7.
19. Paulson J. A., Balistrieri L. Modeling removal of Cd, Cu, Pb, and Zn in acidic groundwater during neutralization by ambient surface waters and groundwaters. Environmental Science & Technology. 1999, vol. 33, no. 21, pp. 3850—3856.
20. Zhao H., Xia B., Qin J., Zhang J. Hydrogeochemical and mineralogical characteristics related to heavy metal attenuation in a stream polluted by acid mine drainage. A case study in Dabaoshan Mine, China. Journal of Environmental Sciences. 2012, vol. 24, no. 6, pp. 979—989. DOI: 10.1016/S10010742(11)60868-1.
21. Hammarstrom J. M., Seal R. R., Meier A. L., Kornfeld J. M. Secondary sulfate minerals associated with acid drainage in the eastern US: recycling of metals and acidity in surficial environments. Chemical Geology. 2005, vol. 215, no. 1—4, pp. 407—431. DOI: 10.1016/j.chemgeo.2004.06.053.
22. Murad E., Rojik P. Iron mineralogy of mine-drainage precipitates as environmental indicators: review of current concepts and a case study from the Sokolov Basin, Czech Republic. Clay Minerals. 2005, vol. 40, no. 4, pp. 427—440. DOI: 10.1180/0009855054040181.
23. Bigham J. M., Schwertmann U., Traina S. J., Winland R. L., Wolf M. Schwertmannite and the chemical modeling of iron in acid sulfate waters. Geochimica et Cosmochimica Acta. 1996, vol. 60, no. 12, pp. 2111—2121. DOI: 10.1016/0016-7037(96)00091-9.