Technological evaluation of reagent regimes for flotation of gold-bearing antimony ore

The subject of research is the circuit of flotation of gold from complex gold-bearing antimony ore from a deposit in West Siberia. The test ore features a moderate content of sulfides represented mostly by antimonite, arsenopyite, pyrite–marcasite and pyrrhotine, while the rock-forming minerals are quartz and mica–hydrous mica. It is shown that xanthates can be arranged in the ascending order of their efficiency relative to the test pulp as follows: potassium butyl xanthate–potassium amyl xanthate–potassium isobutyl xanthate–sodium isopropyl xanthate. The best results are achieved with isopropyl xanthate: the loss of gold with flotation tailings totals 1.92%, which is lower than in the standard reagent regime adopted at the factory by 5.35%. It is found that the least loss of gold with flotation tailings takes place when factory’s sodium isobutyl Aeroflot is replaced by BTF-1711 which is a water solution of sodium dialkyl dithiophosphate: as compared with the factory’s reagent regime, the decrease in the loss of gold with flotation tailings totals – 2,67%, and the gold content of the tailings reduces from 0.34 to 0.22 g/t.

Keywords: gold-bearing antimony ore, arsenopyrite, antimonite, flotation, flotation production data, combination of reagents–collectors, gold, sodium isobutyl Aeroflot, sodium isopropyl xanthate.
For citation:

Algebraistova N. K., Prokopev I. V., Ananenko E. S., Kinyakin A. I. Technological evaluation of reagent regimes for flotation of gold-bearing antimony ore. MIAB. Mining Inf. Anal. Bull. 2024;(4):145-154. [In Russ]. DOI: 10.25018/0236_1493_2024_4_0_145.

Acknowledgements:
Issue number: 4
Year: 2024
Page number: 145-154
ISBN: 0236-1493
UDK: 622.7
DOI: 10.25018/0236_1493_2024_4_0_145
Article receipt date: 23.09.2022
Date of review receipt: 18.01.2024
Date of the editorial board′s decision on the article′s publishing: 10.03.2024
About authors:

N.K. Algebraistova1, Cand. Sci. (Eng.), Assistant Professor, e-mail: algebraistova@mail.ru, ORCID ID: 0000-0002-0185-8389,
I.V. Prokopev, Cand. Sci. (Eng.), Assistant Professor, M.K. Ammosov North-Eastern Federal University, 677000, Yakutsk, Republic of Sakha, Russia, e-mail: prokopiev.iv@yandex.ru, ORCID ID: 0000-0002-9230-6415,
E.S. Ananenko1, Graduate Student, e-mail: ananenkoes@inbox.ru, ORCID ID: 0000-0002-1299-5397,
A.I. Kinyakin1, Graduate Student, e-mail: mrak81083@mail.ru, ORCID ID: 0000-0002-0040-4473,
1 Siberian Federal University, 660025, Krasnoyarsk, Russia.

 

For contacts:

E.S. Ananenko, e-mail: ananenkoes@inbox.ru.

Bibliography:

1. Matveeva T. N., Gromova N. K., Lantsova L. B. Development of a method for selective flotation of antimony and arsenic sulfides in the enrichment of complex gold-bearing ores. Tsvetnye Metally. 2019, no. 4, pp. 6—12. [In Russ]. DOI: 10.17580/tsm.2019.04.01.

2. Solozhenkin P. M. Development of principles for selecting reagents for flotation of antimony and bismuth minerals. Doklady Akademii nauk. 2016, vol. 466, no. 5, pp. 559. [In Russ]. DOI: 10.7868/ S0869565216050145.

3. Cui W., Zhang J., Liu Z. Selective enhancement of jamesonite flotation using Aerophine 3418A/DDTC mixture. Minerals Engineering. 2023, vol. 191, article 107934. DOI: 10.1016/j.mineng.2022.107934.

4. Solozhenkin P. M., Kushakov S. T., Kovalev V. N. Creation of technology of industrial processing gold — antimonic concentrates in region of the far North. MIAB. Mining Inf. Anal. Bull. 2018, no. S1, pp. 395—407. [In Russ]. DOI: 10.25018/0236-1493-2018-1-1-395-407.

5. Kanarskii A. V., Adamov E. V., Krylova L. N. Flotation concentration of the sulfide antimonyarsenic gold bearing ore. Izvestiya vuzov. Tsvetnaya metallurgiya. 2012, no. 2, pp. 12—17. [In Russ].

6. Matveeva T. N., Ivanova T. A., Getman V. V., Gromova N. K. New flotation agents for recovery of microand nanoparticles of precious metals from rebellious ore. Gornyi Zhurnal. 2017, no. 11, pp. 89—94. [In Russ]. DOI: 10.17580/гж.2017.11.16.

7. Jianhua Chen The interaction of flotation reagents with metal ions in mineral surfaces. A perspective from coordination chemistry. Minerals Engineering. 2021, vol. 171, article 107067. DOI: 10.1016/j.mineng.2021.107067.

8. Ozer M. Flotation of antimony ores with high arsenic content. Physicochemical Problems of Mineral Processing. 2022, vol. 5, article 52865. DOI: 10.37190/ppmp/152865.

9. Dembele S., Akcil A., Panda S. Technological trends, emerging applications and metallurgical strategies in antimony recovery from stibnite. Minerals Engineering. 2022, vol. 175, article 107304. DOI: 10.1016/j.mineng.2021.107304.

10. Ignatkina V. A., Kayumov A. A., Yergesheva N. D. Floatability and calculated reactivity of gold and sulfide minerals. Russian Journal of Non-Ferrous Metals. 2022, vol. 63, pp. 473—481. DOI: 10.3103/S1067821222050054.

11. Zhengyao Li, Yuanyuan Wang, Muxin Jia, Ligang Wen, Xuewen Wang, Jinzhi Wei Effect and mechanism of depressant disodium carboxymethyl trithiocarbonate on flotation Separation of stibnite and pyrite. Mining, Metallurgy & Exploration. 2022, vol. 39, pp. 1267—1275. DOI: 10.1007/s42461-022-00582-4.

12. Guo X., Xin Yu., Wang H., Tian Q. Mineralogical characterization and pretreatment for antimony extraction by ozone of antimony-bearing refractory gold concentrates. Transactions of Nonferrous Metals Society of China. 2017, vol. 27, pp. 1888—1895. DOI: 10.1016/S1003-6326(17)60213-9.

13. Cao Q., Huang Y., Zou H., Wen S. The surface features of activated stibnite surface with copper or lead ion. Physicochemical Problems of Mineral Processing. 2018, pp. 763—770. DOI: 10.5277/ppmp1884.

14. Komogortsev B. V., Varenichev A. A. The use of selective collecting agents in technology flotation gold-sulfide ores. MIAB. Mining Inf. Anal. Bull. 2016, no. 12, pp. 231—241. [In Russ].

15. Algebraistova N. K., Prokopiev I. V., Markova A. S., Kolotushkin D. M. Flow sheet and reactant treatment for lead-zinc ore bulk flotation. Gornyi Zhurnal. 2017, no. 1, pp. 50—54. [In Russ]. DOI: 10. 17580/gzh.2017.01.10.

16. Sinche-Gonzalez M., Fornasiero D. Understanding the effect of sulphate in mining-process water on sulphide flotation. Minerals Engineering. 2021, vol. 165, article 106865. DOI: 10.1016/j. mineng.2021.106865.

17. Ikumapayi F., Rao K. H. Recycling process water in complex sulfide ore flotation: Effect of calcium and sulfate on sulfide minerals recovery. Mineral Processing and Extractive Metallurgy Review. 2015, vol. 36. DOI: 10.1080/08827508.2013.868346.

18. Di Feo A., Hill-Svehla C. M., Hart B. R., Volchek K., Morin L., Demers A. The effects of water recycling on flotation at a North American concentrator. Minerals Engineering. 2021, vol. 170, article 107037. DOI: 10.1016/j.mineng.2021.107037.

19. Segura-Salazar J., Brito-Parada P. Stibnite froth flotation. A critical review. Minerals Engineering. 2021, vol. 163, article 106713. DOI: 10.1016/j.mineng.2020.106713.

20. Qin X., Deng J., Lai H., Zhang X. Beneficiation of Antimony oxide ore. A review. Russian Journal of Non-Ferrous Metals. 2017, vol. 58, pp. 321—329. DOI: 10.3103/S1067821217040186.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.