Bibliography: 1. Gladyr A. V., Kursakin G. A., Rasskazov M. I., Konstantinov A. V. Method to detect hazardous areas in rock mass from seismoacoustic observations. MIAB. Mining Inf. Anal. Bull. 2019, no. 8, pp. 21—32. [In Russ]. DOI: 10.25018/0236-1493-2019-08-0-21-32.
2. Rasskazov M. I., Gladyr A. V., Tereshkin A. A., Tsoi D. I. Seismoacoustic rock pressure control system at the Mir underground mine. Problems of Subsoil Use. 2019, no. 2 (21), pp. 56—61. [In Russ]. DOI: 10.25635/2313-1586.2019.02.056.
3. Zhang C., Jin G., Liu C., Li S., Xue J., Cheng R., Xinglong W., Zeng X. Prediction of rockbursts in a typical island working face of a coal mine through microseismic monitoring technology. Tunnelling and Underground Space Technology. 2021, vol. 113, article 103972. DOI: 10.1016/j.tust.2021. 103972.
4. Sharapov I. R., Feofilov S. A. Ground passive microseismic monitoring in the study, development and operation of subsoil in the oil and gas and mining industries. Pribory i sistemy razvedochnoy geofiziki. 2021, no. 3, pp. 10—19. [In Russ].
5. Li L., Tan J., Wood D. A., Zhao Z., Becker D., Lyu Q., Chen, H. A review of the current status of induced seismicity monitoring for hydraulic fracturing in unconventional tight oil and gas reservoirs. Fuel. 2019, vol. 242, pp. 195—210. DOI: 10.1016/j.fuel.2019.01.026.
6. Razumov E. E., Rukavishnikov G. D., Mulev S. N., Prostov S. M. Seismic activity in rock mass during mining operations in Vorkutaugol’s Komsomolskaya Mine. MIAB. Mining Inf. Anal. Bull. 2022, no. 1, pp. 104—114. [In Russ]. DOI: 10.25018/0236_1493_2022_1_0_104.
7. Azarov A. V., Serdyukov A. S. Software package for data processing in microseismic monitoring in mineral mining. MIAB. Mining Inf. Anal. Bull. 2023, no. 2, pp. 58—71. [In Russ]. DOI: 10.25018/ 0236_1493_2023_2_0_58.
8. Jiang Z., Li Q., Hu Q., Chen J., Li X., Wang X., Xu Y. Underground microseismic monitoring of a hydraulic fracturing operation for CBM reservoirs in a coal mine. Energy Science Engineering. 2019, vol. 7, no. 3, pp. 986—999. DOI: 10.1002/ese3.329.
9. Zlobina T. V. Influence of width and height of rooms on microseismic activity in potash mines. MIAB. Mining Inf. Anal. Bull. 2019, no. 8, pp. 136—145. [In Russ]. DOI: 10.25018/0236-1493-201908-0-136-145.
10. Tzavaras J., Buske S., Groß K., Shapiro S. Three-dimensional seismic imaging of tunnels. International Journal of Rock Mechanics and Mining Sciences. 2012, vol. 49, pp. 12—20. DOI: 10.1016/j. ijrmms.2011.11.010.
11. Dorokhin K. A. Obosnovanie i razrabotka metoda otsenki geodinamicheskogo sostoyaniya massiva gornykh porod na osnove dispersionnykh parametrov seysmicheskikh voln [Substantiation and development of a method for assessing the geodynamic state of a rock mass based on the dispersion parameters of seismic waves], Candidate’s thesis, Moscow, IPKON RAN, 2017, 24 p.
12. Czarny R., Malinowski M., Chamarczuk M., Ćwiękała M., Olechowski S., Isakow Z., Sierodzki P. Dispersive seismic waves in a coal seam around the roadway in the presence of excavation damaged zone. International Journal of Rock Mechanics and Mining Sciences. 2021, vol. 148, article 104937. DOI: 10.1016/j.ijrmms.2021.104937.
13. Czarny R., Malinowski M., Ćwiękała M., Olechowski S., Isakow Z., Sierodzki P. Characterisation of the tunnel-channel wave around a coal mine roadway based on synthetic and real data. NSG2020 3rd Conference on Geophysics for Mineral Exploration and Mining. 2020, vol. 2020, no. 1, pp. 1—5. DOI: 10.3997/2214-4609.202020024.
14. Chen K., Zhang Z., Zhou Y. Application of surface wave in reinforced concrete invert detection.IOP Conference Series: Earth and Environmental Science. 2021, vol. 660, no. 1, article 012069. DOI: 10.1088/1755-1315/660/1/012069.
15. Bohlen T., Lorang U., Rabbel W., Müller C., Giese R., Lüth S., Jetschny S. Rayleigh-to-shear wave conversion at the tunnel face—From 3D-FD modeling to ahead-of-drill exploration. Geophysics. 2007, vol. 72, no. 6, pp. T67—T79. DOI: 10.1190/1.2785978.
16. Jetschny S., Bohlen T., De Nil D. On the propagation characteristics of tunnel surface waves for seismic prediction. Geophysical Prospecting. 2010, vol. 58, no. 2, pp. 245—256. DOI: 10.1111/j.13652478.2009.00823.x.
17. Jetschny S., Bohlen T., Kurzmann A. Seismic prediction of geological structures ahead of the tunnel using tunnel surface waves. Geophysical Prospecting. 2011, vol. 59, no. 5, pp. 934—946. DOI: 10.1111/j.1365-2478.2011.00958.x.
18. Tromp J., Komatitsch D., Liu Q. Spectral-element and adjoint methods in seismology. Communications in Computational Physics. 2008, vol. 3, no. 1, pp. 1—32.
19. Peter D., Komatitsch D., Luo Y., Martin R., Le Goff N. Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes. Geophysical Journal International. 2011, vol. 186, no. 2, pp. 721—739. DOI: 10.1111/j.1365-246X.2011.05044.x.
20. Hafeez M. B., Krawczuk M. A review: Applications of the spectral finite element method. Archives of Computational Methods in Engineering. 2023, vol. 30, no. 5, pp. 3453—3465. DOI: 10.1007/ s11831-023-09911-2.
21. Kurlenya M. V., Skazka V. V., Azarov A. V., Serdyukov A. S., Patutin A. V. Using surface waves for monitoring rock mass condition around underground openings and structures. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopaemykh. 2022, no. 6, pp. 3—14. [In Russ]. DOI: 10.15372/FTPRPI20220601.
22. Serdyukov A. S., Yablokov A. V., Duchkov A. A., Azarov A. A., Baranov V. D. Slant f-k transform of multichannel seismic surface wave data. Geophysics. 2019, vol. 84, no. 1, pp. A19—A24. DOI: 10.1190/geo2018-0430.1.
23. Long M., Trafford A., McGrath T., O'Connor P. Multichannel analysis of surface waves (MASW) for offshore geotechnical investigations. Engineering Geology. 2020, vol. 272, article 105649. DOI: 10.1016/j.enggeo.2020.105649.
24. Levin I. S., Ponomarenko A. V., Polovkov V. V., Popov D. A. On the method of surface-wave tomography and perspectives for its application in engineering seismic exploration. Vestnik of SaintPetersburg University. Earth Sciences. 2022, vol. 67, no. 2, pp. 202—226. [In Russ]. DOI: 10.21638/ spbu07.2022.201.
25. Chugaev A. V. Results of monitoring of a potentially hazardous area of the Verkhnekamsk potassium salt deposit using the method of multichannel analysis of surface waves. Gornoe ekho. 2021, no. 3, pp. 68—73. [In Russ]. DOI:10.7242/echo.2021.3.13.