Theoretical investigation of usability of tunnel waves in rock mass monitoring near underground structures

The article addresses the problem connected with the control of underground structures in solid mineral mining. For the problem solving, it is proposed to use the surface/tunnel waves which propagate along the surfaces of underground openings. The investigation of the proposed approach efficiency used the methods of mathematical modeling and numerical experimentation. The scope of the analysis embraced propagation of seismic waves in a medium containing a long void (underground roadway, tunnel) and a nonuniform inclusion (domain with different velocity characteristics than in the enclosing medium). The elasticity equations were solved using the Spectral Element Method (SEM). When an active source is present on the surface of the void, the scattered and reflected waves appear in the seismograms. The developed numerical algorithm uses summing up of the energies of these waves. The algorithm enables detection of structural features of media near voids. It is shown that the detectability of an abnormal zone in rocks drops with the growing distance between the zone and the void. At the distance greater than 0.6 of the wave length, it becomes difficult to detect an inclusion. Another approach includes the analysis of the velocity characteristics of the surface waves. In calculation of the phase velocities of the surface waves propagating along a void, some peculiarities arise at the location of the inhomogeneity. In particular, if the inhomogeneity features the lower velocity parameters than the enclosing medium has, the decrease is observed in the phase velocity.

Keywords: tunnel waves, surface waves, seismic monitoring, underground structure control, rock mass control, underground openings, mathematical modeling, data processing.
For citation:

Azarov A. V., Serdyukov A. S., Skazka V. V. Theoretical investigation of usability of tunnel waves in rock mass monitoring near underground structures. MIAB. Mining Inf. Anal. Bull. 2024;(4):155-167. [In Russ]. DOI: 10.25018/0236_1493_2024_4_0_155.


The study was supported by the Russian Science Foundation, Project No. 22-27-20126,, and by the Government of the Novosibirsk Region.

Issue number: 4
Year: 2024
Page number: 155-167
ISBN: 0236-1493
UDK: 550.34+550.8.05
DOI: 10.25018/0236_1493_2024_4_0_155
Article receipt date: 10.08.2023
Date of review receipt: 05.10.2023
Date of the editorial board′s decision on the article′s publishing: 10.03.2024
About authors:

A.V. Azarov1, Researcher, e-mail:, ORCID ID: 0000-0001-6967-4239,
A.S. Serdyukov1, Cand. Sci. (Phys. Mathem.), Senior Researcher, e-mail:, ORCID ID: 0000-0035-8563-5708,
V.V. Skazka1, Dr. Sci. (Phys. Mathem.), Leading Researcher, e-mail:,
1 Chinakal Institute of Mining of Siberian Branch of Russian Academy of Sciences, 630091, Novosibirsk, Russia.


For contacts:

A.V. Azarov, e-mail:


1. Gladyr A. V., Kursakin G. A., Rasskazov M. I., Konstantinov A. V. Method to detect hazardous areas in rock mass from seismoacoustic observations. MIAB. Mining Inf. Anal. Bull. 2019, no. 8, pp. 21—32. [In Russ]. DOI: 10.25018/0236-1493-2019-08-0-21-32.

2. Rasskazov M. I., Gladyr A. V., Tereshkin A. A., Tsoi D. I. Seismoacoustic rock pressure control system at the Mir underground mine. Problems of Subsoil Use. 2019, no. 2 (21), pp. 56—61. [In Russ]. DOI: 10.25635/2313-1586.2019.02.056.

3. Zhang C., Jin G., Liu C., Li S., Xue J., Cheng R., Xinglong W., Zeng X. Prediction of rockbursts in a typical island working face of a coal mine through microseismic monitoring technology. Tunnelling and Underground Space Technology. 2021, vol. 113, article 103972. DOI: 10.1016/j.tust.2021. 103972.

4. Sharapov I. R., Feofilov S. A. Ground passive microseismic monitoring in the study, development and operation of subsoil in the oil and gas and mining industries. Pribory i sistemy razvedochnoy geofiziki. 2021, no. 3, pp. 10—19. [In Russ].

5. Li L., Tan J., Wood D. A., Zhao Z., Becker D., Lyu Q., Chen, H. A review of the current status of induced seismicity monitoring for hydraulic fracturing in unconventional tight oil and gas reservoirs. Fuel. 2019, vol. 242, pp. 195—210. DOI: 10.1016/j.fuel.2019.01.026.

6. Razumov E. E., Rukavishnikov G. D., Mulev S. N., Prostov S. M. Seismic activity in rock mass during mining operations in Vorkutaugol’s Komsomolskaya Mine. MIAB. Mining Inf. Anal. Bull. 2022, no. 1, pp. 104—114. [In Russ]. DOI: 10.25018/0236_1493_2022_1_0_104.

7. Azarov A. V., Serdyukov A. S. Software package for data processing in microseismic monitoring in mineral mining. MIAB. Mining Inf. Anal. Bull. 2023, no. 2, pp. 58—71. [In Russ]. DOI: 10.25018/ 0236_1493_2023_2_0_58.

8. Jiang Z., Li Q., Hu Q., Chen J., Li X., Wang X., Xu Y. Underground microseismic monitoring of a hydraulic fracturing operation for CBM reservoirs in a coal mine. Energy Science Engineering. 2019, vol. 7, no. 3, pp. 986—999. DOI: 10.1002/ese3.329.

9. Zlobina T. V. Influence of width and height of rooms on microseismic activity in potash mines. MIAB. Mining Inf. Anal. Bull. 2019, no. 8, pp. 136—145. [In Russ]. DOI: 10.25018/0236-1493-201908-0-136-145.

10. Tzavaras J., Buske S., Groß K., Shapiro S. Three-dimensional seismic imaging of tunnels. International Journal of Rock Mechanics and Mining Sciences. 2012, vol. 49, pp. 12—20. DOI: 10.1016/j. ijrmms.2011.11.010.

11. Dorokhin K. A. Obosnovanie i razrabotka metoda otsenki geodinamicheskogo sostoyaniya massiva gornykh porod na osnove dispersionnykh parametrov seysmicheskikh voln [Substantiation and development of a method for assessing the geodynamic state of a rock mass based on the dispersion parameters of seismic waves], Candidate’s thesis, Moscow, IPKON RAN, 2017, 24 p.

12. Czarny R., Malinowski M., Chamarczuk M., Ćwiękała M., Olechowski S., Isakow Z., Sierodzki P. Dispersive seismic waves in a coal seam around the roadway in the presence of excavation damaged zone. International Journal of Rock Mechanics and Mining Sciences. 2021, vol. 148, article 104937. DOI: 10.1016/j.ijrmms.2021.104937.

13. Czarny R., Malinowski M., Ćwiękała M., Olechowski S., Isakow Z., Sierodzki P. Characterisation of the tunnel-channel wave around a coal mine roadway based on synthetic and real data. NSG2020 3rd Conference on Geophysics for Mineral Exploration and Mining. 2020, vol. 2020, no. 1, pp. 1—5. DOI: 10.3997/2214-4609.202020024.

14. Chen K., Zhang Z., Zhou Y. Application of surface wave in reinforced concrete invert detection.IOP Conference Series: Earth and Environmental Science. 2021, vol. 660, no. 1, article 012069. DOI: 10.1088/1755-1315/660/1/012069.

15. Bohlen T., Lorang U., Rabbel W., Müller C., Giese R., Lüth S., Jetschny S. Rayleigh-to-shear wave conversion at the tunnel face—From 3D-FD modeling to ahead-of-drill exploration. Geophysics. 2007, vol. 72, no. 6, pp. T67—T79. DOI: 10.1190/1.2785978.

16. Jetschny S., Bohlen T., De Nil D. On the propagation characteristics of tunnel surface waves for seismic prediction. Geophysical Prospecting. 2010, vol. 58, no. 2, pp. 245—256. DOI: 10.1111/j.13652478.2009.00823.x.

17. Jetschny S., Bohlen T., Kurzmann A. Seismic prediction of geological structures ahead of the tunnel using tunnel surface waves. Geophysical Prospecting. 2011, vol. 59, no. 5, pp. 934—946. DOI: 10.1111/j.1365-2478.2011.00958.x.

18. Tromp J., Komatitsch D., Liu Q. Spectral-element and adjoint methods in seismology. Communications in Computational Physics. 2008, vol. 3, no. 1, pp. 1—32.

19. Peter D., Komatitsch D., Luo Y., Martin R., Le Goff N. Forward and adjoint simulations of seismic wave propagation on fully unstructured hexahedral meshes. Geophysical Journal International. 2011, vol. 186, no. 2, pp. 721—739. DOI: 10.1111/j.1365-246X.2011.05044.x.

20. Hafeez M. B., Krawczuk M. A review: Applications of the spectral finite element method. Archives of Computational Methods in Engineering. 2023, vol. 30, no. 5, pp. 3453—3465. DOI: 10.1007/ s11831-023-09911-2.

21. Kurlenya M. V., Skazka V. V., Azarov A. V., Serdyukov A. S., Patutin A. V. Using surface waves for monitoring rock mass condition around underground openings and structures. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopaemykh. 2022, no. 6, pp. 3—14. [In Russ]. DOI: 10.15372/FTPRPI20220601.

22. Serdyukov A. S., Yablokov A. V., Duchkov A. A., Azarov A. A., Baranov V. D. Slant f-k transform of multichannel seismic surface wave data. Geophysics. 2019, vol. 84, no. 1, pp. A19—A24. DOI: 10.1190/geo2018-0430.1.

23. Long M., Trafford A., McGrath T., O'Connor P. Multichannel analysis of surface waves (MASW) for offshore geotechnical investigations. Engineering Geology. 2020, vol. 272, article 105649. DOI: 10.1016/j.enggeo.2020.105649.

24. Levin I. S., Ponomarenko A. V., Polovkov V. V., Popov D. A. On the method of surface-wave tomography and perspectives for its application in engineering seismic exploration. Vestnik of SaintPetersburg University. Earth Sciences. 2022, vol. 67, no. 2, pp. 202—226. [In Russ]. DOI: 10.21638/ spbu07.2022.201.

25. Chugaev A. V. Results of monitoring of a potentially hazardous area of the Verkhnekamsk potassium salt deposit using the method of multichannel analysis of surface waves. Gornoe ekho. 2021, no. 3, pp. 68—73. [In Russ]. DOI:10.7242/echo.2021.3.13.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.