Theoretical and numerical modeling of electric conductance in porous media

Authors: Sizin P. E.

The spotlight is on the electric conductance of 2D and 3D media with perfectly conducting or insulating inclusions. Using the known formulas for incremental conductance in introduction of a small inclusion in a medium, the differential equations are obtained for the conductance of a medium with the non-small concentration of inclusions. The relations behave exponentially and contain no percolation thresholds. In 2D case, the relations between the conductance and concentration of circle and square inclusions are obtained. In terms of a 3D medium, the spherical inclusions are analyzed, which makes it possible to model porous rocks. The results were tested in COMSOL Multiphysics by means of construction of single dimension and unitary conductance samples added then with inclusions. The tests aimed to examine the conformity between the experimental and theoretical relations of conductivity and concentration of inclusions in the two-component media, as well as to check the agreement with the known predictions for two models–effective model approximation and Rayleigh model with inclusions located at the periodic lattice sites. The accomplished numerical experiments exhibit a larger advantage of the proposed formulas over the formulas derived using the method of effective medium. The Rayleigh model and the proposed model agree well with the numerical experimental data up to the inclusion concentration of ~0.3, i.e. within the whole range of values when fracturing of a sample is yet far. In 3D case, the proposed model is more accurate than the Rayleigh model. Moreover, the proposed model is much simpler in terms of mathematical notations.

Keywords: electric conductance, two-component medium, disjoint inclusions, porous rocks, effective medium approximation, 2D and 3D models, numerical modeling, COMSOL Multiphysics.
For citation:

Sizin P. E. Theoretical and numerical modeling of electric conductance in porous media. MIAB. Mining Inf. Anal. Bull. 2023;(5):43-56. [In Russ]. DOI: 10.25018/0236_ 1493_2023_5_0_43.

Issue number: 5
Year: 2023
Page number: 43-56
ISBN: 0236-1493
UDK: 622.83: 550.83
DOI: 10.25018/0236_1493_2023_5_0_43
Article receipt date: 04.08.2022
Date of review receipt: 06.03.2023
Date of the editorial board′s decision on the article′s publishing: 10.04.2023
About authors:

P.E. Sizin, Cand. Sci. (Phys. Mathem.), Assistant Professor, Institute of Basic Education, National University of Science and Technology «MISiS», 119049, Moscow, Russia, e-mail:, ORCID ID: 0000-0001-8156-4972.


For contacts:

1. Feng P., Zhao J., Dai F., Wei M., Liu B. Mechanical behaviors of conjugate-flawed rocks subjected to coupled static—dynamic compression. Acta Geotechnica. 2022, vol. 17, no. 5, pp. 1767— 1784. DOI: 10.1007/s11440-021-01322-6.

2. Sobolev G. A. Osnovy prognoza zemletryaseniy [Earthquakes prediction basics], Moscow, Nauka, 1993, 313 p.

3. Lu J., Jiang C., Jin Z., Wang W., Zhuang W., Yu H. Three-dimensional physical model experiment of mining-induced deformation and failure characteristics of roof and floor in deep underground coal seams. Process Safety and Environmental Protection. 2021, vol. 150, no. 6, pp. 400—415. DOI: 10.1016/j.psep.2021.04.029.

4. Andrievskij A. P. Design procedure of optimal parameters of drilling and blasting operations certificate under drilling with straight slot tier cut. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 1992, no. 5, pp. 71—77. [In Russ].

5. Khramchenkov M. G., Korolev E. A. Dynamics of fractures growth in oil saturated carbonate beds of the Republic of Tatarstan. Oil Industry Journal. 2017, no. 4, pp. 54—57. [In Russ]. DOI: 10.24887/0028-2448-2017-4-54-57.

6. Feng P., Dai F., Shuai K., Wei M. Dynamic mechanical behaviors of pre-fractured sandstone with noncoplanar and unparallel flaws. Mechanics of Materials. 2022, vol. 166, no. 6, article 104219. DOI: 10.1016/j.mechmat.2022.104219.

7. Chengzhi Qi, Fa Zhao, Dyskin A. V., Chen Xia, Pasternak E. Crack interaction and fracturing of geomaterials with multiscale cracks. International Journal of Rock Mechanics and Mining Sciences. 2022, vol. 153, no. 5, article 105084. DOI: 10.1016/j.ijrmms.2022.105084.

8. Sudarikov A. E., Merkulova V. A. Specifics of calculating the stability of mine workings when applying drilling and blasting. ARPN Journal of Engineering and Applied Sciences. 2017, no. 12, pp. 6192—6196. DOI: 10.5593/sgem2014/b12/s2.078.

9. Ren S., Han T., Fu L., Yan H. Pressure effects on the anisotropic velocities of rocks with aligned fractures. Acta Geophysica Sinica. 2021, vol. 64, no. 7, pp. 2504—2514. DOI: 10.6038/ cjg2021O0318.

10. Anderson I., Ma J., Wu X., Stow D. Determining reservoir intervals in the Bowland Shale using petrophysics and rock physics models. Geophysical Journal International. 2022. vol. 228, pp. 39—65. DOI: 10.1093/gji/ggab334.

11. Grib N. N., Uzbekov A. N., Imaev V. S., Grib G. V., Abetov A. E. Variations in the geoelectric properties of the rock masses as a result of the seismic effects of industrial explosions. IOP Conference Series: Earth and Environmental Science. 2019, vol. 362, no. 1, article 012120. DOI: 10.1088/1755-1315/362/1/012120.

12. Balagurov B. Ya. On the influence of the shape of inclusions on the conductivity of two-dimensional models of composites. Technical Physics. 2011, vol. 81, no. 5, pp. 11—17. [In Russ].

13. Bruggeman D. A. G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen. Annalen der Physik. 1935, vol. 416, pp. 636—664. DOI: 10.1002/andp.19354 160802.

14. Landauer R. Conductivity of cold-worked metals. Physical Review. 1951, vol. 82, pp. 520—521. DOI: 10.1103/PhysRev.82.520.

15. Kasakhara K. Mekhanika zemletryaseniy [Earthquake mechanics], Moscow, Mir, 1985, 264 p.

16. Sizin P. E, Shkuratnik V. L. Theoretical estimation of microcracks influence on rocks conductivity with Maxwell approximation. MIAB. Mining Inf. Anal. Bull. 2015, no. 3, pp. 212—218. [In Russ].

17. Zhukov V. S. Influence of intergranular and fractured porosity on the electrical resistivity of the reservoirs of the Chayandinskoye field (Eastern Siberia). Geofizicheskie issledovaniya. 2022, vol. 23, no. 2, pp. 5 —17. [In Russ]. DOI: 10.21455/gr2022.2-1.

18. Parkhomenko E. I. Elektricheskie svoystva gornykh porod [Electrical properties of rocks], Moscow, Nauka, 1965, 164 p.

19. Aguilera R. Analysis of naturally fractured reservoirs from conventional well log. Journal of Petroleum Technology. 1976, vol. 28, no. 7, pp. 764—772.

20. Voznesensky A. S., Kidima-Mbombi L. K. Formation of synthetic structures and textures of rocks when simulating in COMSOL Multiphysics. Mining Science and Technology (Russia). 2021, vol. 6, no. 2, pp. 67—72. [In Russ]. DOI: 10.17073/2500-0632-2021-2-65-72.

21. Balagurov B. Ya. Elektrofizicheskie svoystva kompozitov: Makroskopicheskaya teoriya [Electrophysical properties of composites: Macroscopic theory], Moscow, URSS, 2018, 752 p.

22. Balagurov B. Ya. Conductivity of the two-dimensional Rayleigh model at a critical concentration — the percolation threshold. Journal of Experimental and Theoretical Physics. 2021, vol. 159, no. 3, pp. 553—562. [In Russ]. DOI: 10.31857/S0044451021030160.

23. Korolev E. A., Eskin A. A., Morozov V. P., Kolchugin A. N., Plotnikova I. N., Pronin N. V., Nosova F. F. Dependence of the composition and mobility of oil in carbonate rocks on their porosity and permeability. Oil Industry Journal. 2013, no. 6, pp. 32—33. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.