Thermographic study of rock samples in dynamic fracture

Underground mineral mining is often faced with the problems connected with an increase on overburden pressure either because of thickness of overlying rock strata, or due to regional and local tectonics. However, the increase in the overburden pressure can be induced by the incorrect mining system. There are many different geomechanical and geophysical methods for monitoring high overburden pressure zones to date in the modern world. This paper describes the temperature tests of rock samples from Luginskoe deposit in Transbaikalia. The temperature was measured after the samples reached the ultimate uniaxial compression strength. From the test results, the temperature change at the ultimate compression strength was observed in 30 % of the samples. The temperature measurement tests show that there is a certain correlation between the temperature and stress state of rocks, which implies potential usability of thermography for studying rock mass condition. The method of thermography can be used for the noncontact real-time local stress estimate in underground mines by means of recording temperature changes induced by overburden pressure using a thermal imager.

Keywords: overburden pressure, rockburst prediction, thermography, infrared radiation, thermal imager, limit strength.
For citation:

Tereshkin A. A., Rasskazov M. I., Tsoi D. I., Konstantinov A. V., Anikin P. A. Thermographic study of rock samples in dynamic fracture. MIAB. Mining Inf. Anal. Bull. 2021;(12—1):204—212. [In Russ]. DOI: 10.25018/0236_1493_2021_121_0_204.


The studies were carried out using the resources of the Center for Shared Use of Scientific Equipment “Center for Processing and Storage of Scientific Data of the Far Eastern Branch of the Russian Academy of Sciences”, funded by the Russian Federation represented by the Ministry of Science and Higher Education of the Russian Federation under project No. 075—15—2021—663.

Issue number: 12
Year: 2021
Page number: 204-212
ISBN: 0236-1493
UDK: 622.831.327
DOI: 10.25018/0236_1493_2021_121_0_204
Article receipt date: 18.07.2021
Date of review receipt: 22.10.2021
Date of the editorial board′s decision on the article′s publishing: 10.11.2021
About authors:

Tereshkin A. A.1, researcher;
Rasskazov M. I.1, researcher;
Tsoi D. I.1, researcher,
Konstantinov A. V.1, researcher,
Anikin P. A.1, Cand. Sci. (Eng.), leading researcher,
1 Mining Institute of the Far Eastern branch of Russian Academy of Sciences, Khabarovsk, Russia.


For contacts:

1. Rasskazov I. YU., Kursakin G. A., Potapchuk M. I., Rasskazov M. I. Geomechanical assessment of technological solutions in the design of mining operations in rockburst hazardous conditions. Zapiski Gornogo instituta. 2012. Vol. 198. pp. 80—85. [In Russ]

2. Chen XJ, Li, LY, Wang, L, Qi, LL. The current situation and prevention and control countermeasures for typical dynamic disasters in kilometer-deep mines in China. Safety Science, 2019, Vol. 115, pp. 229—236, DOI: 10.1016/j.ssci.2019.02.010.

3. Rozanov A. O., Petrov D. N., Rozenbaum A. M., Ilinov M. D., Tereshkin A. A. Acoustic emission precursor criteria of rock damage. Geomechanics and Geodynamics of Rock Masses. SET OF 2 VOLUMES. 2018. pp. 669—672.

4. Gladyr’ A. V., Korchak P. A., Streshnev A. A., Rasskazov M. I., Tereshkin A. A. Installation of an automated rock pressure monitoring system “PROGNOZ ADS” at the pilot site of the United Kirovsky mine of JSC “APATIT”. Markshejderiya i nedropol’zovanie. 2019. no. 4 (102). pp. 52—56. [In Russ]

5. Teryoshkin A. A., Migunov D. S., Anikin P.A, Gladyr’ A. V., Rasskazov M. I. Assessment of the geomechanical state of the rock burst hazardous massif according to the data of local geoacoustic control. Problemy nedropol’zovaniya. 2017. no. 1. pp. 72—80. [In Russ]

6. Seredin V. V., Lejbovich L. O., Pushkareva M. V., Kopylov I. S., Hrulev A. S. On the formation of the surface morphology of a crack in the destruction of rocks. FTPRPI. 2013. no. 3. pp. 85—90. [In Russ]

7. Oparin V. N., Usol’ceva O. M., Semenov V. N., Coj P. A. On some peculiarities of the evolution of the stress-strain state of rock specimens with a structure under uniaxial loading. FTPRPI. 2013. no. 5. pp. 3—19. [In Russ]

8. Bobryakov A. P.On the Mechanism of Intermittent Sliding in a Loose Environment. FTPRPI. 2010. no. 6. pp. 11—16. [In Russ]

9. Chikov B. M., Kargapolov S. A., Ushakov G. D. Experimental stress transformation of pyroxenite. Geologiya i geofizika. 1989. no. 6. pp. 75—79. [In Russ]

10. Voznesenskij A. S., Ustinov K. B., SHkuratnik V. L. A theoretical model of acoustic emission under mechanical loading of rocks in the area of maximum compaction. Prikl. mekhanika i tekhn. fizika. 2006. Vol. 47. no. 4. pp. 145—152. [In Russ]

11. Voznesenskij A. S., Kutkin YA. O., Krasilov M. N. Interrelation of acoustic quality factor with strength properties of limestone. FTPRPI. 2015. no. 1. pp. 30—39. [In Russ]

12. Oparin V. N., YAkovickaya G. E., Vostrecov A. G., Seryakov V. M., Kriveckij A. V. On the coefficient of mechano-electromagnetic transformations during the destruction of rock samples. FTPRPI. 2013. no. 3. pp. 3—20. [In Russ]

13. Seredin V. V. Study of rock temperature in the fracture zone. Fundamental’nye issledovaniya. 2014. no. 9—12. pp. 2713—2717. [In Russ]

14. Prohorov K. V., Gladyr’ A. V., Rasskazov M. I. Shared Use Center “Mineral Resources Research Center”. Gornaya promyshlennost’. 2020. no. 4. pp. 120—126. [In Russ]

15. Proshkin S. S., Lobko K. K. Nekotorye osobennosti izmereniya temperatury s pomoshch’yu teplovizora [Some features of temperature measurement using a thermal imager]. Sbornik nauchnyh trudov po materialam XVI mezhdunarodnoj nauchnoj konferencii. 2018. pp. 14—16. [In Russ]

16. Kiryaeva T. A., Kovchavcev A. P. Geoinformation technologies in safety management of mining operations. Sibbezopasnost’-Spassib. 2013. no. 1. pp. 86—92. [In Russ]

17. Raspopin D. V. Ispol’zovanie teplovizorov v ugol’nyh shahtah. V sbornike: Rossiya molodaya [Use of thermal imagers in coal mines. In the collection: Young Russia]. Sbornik materialov XII vserossijskoj, nauchno-prakticheskoj konferencii molodyh uchenyh s mezhdunarodnym uchastiem. Kemerovo. 2020. pp. 10802.1—10802.3. [In Russ]

18. Seredin V. V., Hrulev A. S. Changes in the temperature of samples of rocks and geomaterials during their destruction. Fiziko-tekhnicheskie problemy razrabotki poleznyh iskopaemyh. 2016. no. 4. pp. 63—69. [In Russ]

19. Araujo R. G.S., Sousa J. L.A. O., Bloch M. Experimental investigation on the influence of temperature on the mechanical properties of reservoir rocks. International Journal of Rock Mechanics and Mining Sciences. 1997. Vol. 34. no. 3—4. pp. 459.

20. Kamińska P., Ziemkiewcz J., Synaszko P., Dragan K. Comparison of pulse thermography (pt) and step heating (sh) thermography in non-destructive testing of unidirectional gfrp composites. Fatigue of Aircraft Structures. 2019. no. 11. pp. 87—102.

21. Holland S. D., Reusser R. S. Material evaluation by infrared thermography. Annual Review of Materials Research. 2016. no. 46. pp. 287—303.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.