Production chain transformation in the coal industry: Engineering and organization

In view of the energy transition and rejection of nonrenewable energy sources, the Russian coal sector has faced the necessity to adapt to the stringent environmental policies. Most companies now act not on their own but within the fully formed production chains (PC). The sanctions and embargo on Russian coal lead to the interruption of PC in the coal and allied industries, and the ban-related uncertainties arise both on the foreign and domestic markets, which promotes additional risk irreducible without material transformation of PC. This study aims to reveal potential evolutionary trends for PC in the coal and allied industries towards their enhanced stress resilience under risk and uncertainty. Based on the Gereffi–Humphrey– Sturgeon method and the Giannakis–Bruggeman approach, the authors propose a search algorithm for PC transformation in the coal industry. For revealing technologies enabling increased stress resilience of PC and business companies in the coal sector, the authors performed the patent analysis and interviewed expert practitioners in the area of coal mining and processing with respect to the technology availability and relevance. This exhibited a range of the coal mining and deep conversion technologies to make a framework for the stress-resilient production chains. The authors arrive at a conclusion that, despite the current instability, the coal industry is definitely in a position to develop a differentiated approach to transformation of the prevailing production chains.

Keywords: coal industry, production chains, production chain typology, survival ability, stress resilience, resistibility, recoverability, stress resilience factors, promising coal technologies, technological integration.
For citation:

Goosen E. V., Nikitenko S. M. , Kagan E. S., Rada A. O., Nikitina O. I. Production chain transformation in the coal industry: Engineering and organization. MIAB. Mining Inf. Anal. Bull. 2023;(3):163-179. [In Russ]. DOI: 10.25018/0236_1493_2023_3_0_163.

Acknowledgements:

The study was supported by the Russian Science Foundation, Grant No. 22–28-01803, and was carried out using equipment of the Shared Use Center at the Kemerovo State University under State Contract No. 075-15-2021-694 concluded between the Ministry of Science and Higher Education of the Russian Federation and the Kemerovo State University on August 5, 2021, UID RF-2296.61321X0032.

Issue number: 3
Year: 2023
Page number: 163-179
ISBN: 0236-1493
UDK: 662.66; 339.13.012.42
DOI: 10.25018/0236_1493_2023_3_0_163
Article receipt date: 24.08.2022
Date of review receipt: 19.10.2022
Date of the editorial board′s decision on the article′s publishing: 10.02.2023
About authors:

E.V. Goosen1, Cand. Sci. (Econ.), Assistant Professor, Leading Researcher, e-mail: egoosen@yandex.ru, ORCID ID: 0000-0002-1387-4802,
S.M. Nikitenko1, Dr. Sci. (Econ.), Assistant Professor, Chief Researcher, e-mail: nsm.nis@mail.ru, ORCID ID: 0000-0001-6684-4159,
E.S. Kagan2, Cand. Sci. (Eng.), Assistant Professor, Head of Chair, e-mail: kaganes@mail.ru, ORCID ID: 0000-0002-8470-961X,
A.O. Rada2, Cand. Sci. (Econ.), Director, Institute of Digitalization, e-mail: radaartem@mail.ru, ORCID ID: 0000-0001-7678-8402,
O.I. Nikitina2, Head of Analytics Department, Institute of Digitalization, e-mail: senches@mail.ru, ORCID ID: 0000-0002-7869-1732,
1 Federal Research Centre of Coal and Coal Chemistry, Siberian Branch of Russian Academy of Sciences, 650065, Kemerovo, Russia,
2 Kemerovo State University, 650000, Kemerovo, Russia.

 

For contacts:

S.M. Nikitenko, e-mail: nsm.nis@mail.ru.

Bibliography:

1. Smorodinskaya N. V., Katukov D. D. Distributed production under the pandemic shock: Vulnerability, resilience and the new stage of globalization. Voprosy Ekonomiki. 2021, no. 12, pp. 21—47. [In Russ]. DOI: 10.32609/0042-8736-2021-12-21-47.

2. Ruel S., El Baz J., Ivanov D., Das A. Supply chain viability: conceptualization, measurement, and nomological validation. Annals of Operations Research. 2021, pp. 1—30. DOI: 10.1007/s10479-021-03974-9.

3. Sturgeon T. J. How do we define value chains and production networks? IDS Bulletin. 2001, vol. 32, no. 3, pp. 9—18. DOI: 10.1111/j.1759-5436. 2001.mp32003002.

4. Martin R. L. Regional Economic Resilience, Hysteresis and Recessionary Shocks. Journal of Economic Geography. 2012, vol. 12, no. 1, pp. 1—32. DOI: 10.1093/jeg/lbr019.

5. Aldrighetti R., Battini D., Ivanov D., Zennaro I. Costs of resilience and disruptions in supply chain network design models: a review and future research directions. International Journal of Production Economics. 2021, vol. 235, no. 1, article 108103. DOI: 10.1016/j.ijpe.2021.108103.

6. Giannakis E., Bruggeman A. Regional disparities in economic resilience in the European Union Across the Urban—Rural Divide. Regional Studies. 2020, vol. 54, no. 9, pp. 1200—1213. DOI: 10.1080/00343404.2019.1698720.

7. Nikitenko S. M., Goosen E. V., Fedulova E. A., Rada A. O. Modeling flexible value chains based on clean coal technologies. Eurasian Mining. 2022, vol. 2, pp. 25—29. DOI: 10.17580/ em.2022.02.06.

8. Goosen E. V., Nikitenko S. M., Klishin V. I., Kagan E. S., Patrakov Yu. F. Value chain stress resilience and behavioral strategies of companies in Russian coal industry. Mining Science and Technology (Russia). 2022, no. 7(4), pp. 330—342. [In Russ]. DOI: 10.17073/25000632-2022-09-15.

9. Gereffi G., Humphrey J., Sturgeon T. The governance of global value chains. Review of international political economy. 2005, vol. 12, no. 1, pp. 78—104. DOI: 10.1080/09692290500049805.

10. Kondratiev V. B. Global value chains, Industry 4.0 and industrial policy. Journal of the New Economic Association. 2018, no. 3(39), pp. 162—170. [In Russ]. DOI: 10.31737/22212264-2018-39-3-11.

11. Osobennosti protsessa globalizatsii v otraslyakh i kompleksakh mirovoy ekonomiki. Pod red. V. B. Kondrat'eva [Features of the process of globalization in industries and complexes of the world economy. Kondrat'ev V. B. (ed.)], Moscow, IMEMO RAN, 2020. 245 p.

12. Pietrobelli C., Olivari J. Special issue on mining value chains: innovation and learning. Resources Policy. 2018, vol. 58, no. 1, pp. 13—14. DOI: 10.1016/j.resourpol.2018.05.010.

13. Nikitenko S. M., Goosen E. V., Korolev M. K., Fedulova E. A., Mesyats M. A., Kononova S. A. New coal technologies: trends and prospects. Ugol'. 2022, no. S12, pp. 4—10. [In Russ]. DOI: DOI: 10.18796/0041-5790-2022-S12-4-10.

14. Sinitsyn A., Nakoryakova A., Pinalkina V. Perspektivy razvitiya ugol'noy promyshlennosti v Rossii eksportnyy potentsial, finansovoe polozhenie, sotsial'no-ekonomicheskie effekty [Prospects for the development of the coal industry in Russia, export potential, financial situation, socio-economic effects], Moscow, TsSR, 2020. 183 p.

15. Plakitkina L. S., Plakitkin Yu. A. Paris agreement on climate change, Covid-19 and hydrogen energy — new realities of coal mining and consumption in the EU and Asia in the period until 2040. Russian Mining Industry. 2021, no. 1, pp. 83—90. [In Russ]. DOI: 10.30686/16099192-2021-1-83-90.

16. Kolikov K. S., Phan Tuan Anh, Khusainov R. A., Matniazova G. I. Impact of borehole design on methane recovery efficiency in hydraulic fracturing. MIAB. Mining Inf. Anal. Bull. 2022, no. 12, pp. 152—165. [In Russ]. DOI: 10.25018/0236_1493_2022_12_0_152.

17. Zhuikov A. V., Glushkov D. O. Characteristics of co-combustion of hard coal and forest biomass under non-isothermal heating conditions with evaluation of the propensity of the fuel mixture to slagging of heating surfaces. Koks i khimiya. 2022, no. 8, pp. 7—15. [In Russ]. DOI: 10.52351/00232815_2022_08_7.

18. Froese R. E., Shonnard D. R., Miller C. A. An evaluation of greenhouse gas mitigation options for coalred power plants in the US Great Lakes States. Biomass Bio-energy. 2010, vol. 34, no. 3, pp. 251—262. DOI: 10.1016/j.biombioe.2009.10.013.4.

19. Yankovsky S. A., Kuznetsov G. V. Features of physical and chemical transformations of mixed fuels based on typical hard coals and wood during heating. Khimiya tverdogo topliva. 2019, no. 1, pp. 26—33. [In Russ]. DOI: 10.1134/S0023117719010080.3 EDN: YVTUIX.

20. Kanwal F., Ahmed A., Jamil F., Rafiq S., Ayub H. M. U., Ghauri M., Khurram Sh., Munir Sh., Inayat A., Bakar M. S. A., Moogi S., Lam S. S., Park Y-K. Co-Combustion of blends of coal and underutilised biomass residues for environmental friendly electrical energy production. Sustainability. 2021, vol. 13, no. 9, pp. 48—81. DOI: 10.3390/su13094881.5.

21. Glushkov D. O., Matiushenko A. I., Nurpeiis A. E., Zhuikov A. V. An experimental investigation into the fuel oil-free start-up of a coal-red boiler by the main solid fossil fuel with additives of brown coal, biomass and charcoal for ignition enhancement. Fuel Processing Technology. 2021, vol. 223, no. 10, pp. 69—86. DOI: 10.1016/j.fuproc.2021.106986.15.

22. Bartos P. J. Is mining a high-tech industry? Investigations into innovation and productivity advance. Resources Policy. 2007, vol. 32, no. 4, pp. 149—158. DOI: 10.1016/j.resourpol.2007.07.001.

23. Molina O. Innovation in an unfavorable context: Local mining suppliers in Peru. Resources Policy. 2018, vol. 58, pp. 34—48. DOI: 10.1016/j.resourpol.2017.10.011.

24. Kryukov В., Fridman Yu., Rechko G., Markova В. A coal chemical cluster in Kuzbass: between oil, gas and the future? ECO. 2021, no. 51, pp. 97—110. [In Russ]. DOI: 10.30680/ ECO0131-7652-2021-7-97-110.

25. Mochalova L. A., Sokolova O. G., Podkorytov V. N., Eremeeva O. S. Circulation industry cluster management within the mineral mining and processing sector. MIAB. Mining Inf. Anal. Bull. 2021, no. 11-1, pp. 374—387. [In Russ]. DOI: 10.25018/0236_1493_2021_111_ 0_374.

26. Aleksandrova T. N., Nikolaeva N. V., Artamonov I. S. Optimisation of fuel briquettes composition. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 149—160. [In Russ]. DOI: 10.2 5018/0236_1493_2022_62_0_149.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.