Inclusion of aerodynamic characteristics of ventilation systems in determination of recirculating ventilation parameters

The calculated data on potential energy saving in ventilation with air recirculation as function of recirculation ratio and ventilation loss inside the recirculation circuit are described, and the expression to determine the recirculation ratio is constructed. An approach to calculating energy efficiency of ventilation system is proposed, and energy efficiency in recirculating ventilation is analyzed at different values of ventilation loss in the recirculation circuit. The issue of determination of parameters and location site of a recirculation plant in underground roadways is discussed with a view to reaching maximum energy saving, which means reduction of fresh air feed at the expense of operation of main fans. It is found that efficiency of recirculating systems greatly depends on location of recirculation plants in underground roadways. In the framework of the energy efficiency analysis, the curves of different ventilation parameters are plotted, and it is revealed that the minimum of the total energy consumption and its parameters are governed by the location of a recirculation cut-through bound with aerodynamic parameters of ventilation system. The nomogram of the recirculation ratio, air drag in roadways included in the recirculation circuit and the inner ventilation loss is plotted.

Keywords: underground roadway, mine ventilation, energy efficiency, air drag, inner ventilation losses, recirculation, recirculation plant, main fan.
For citation:

Trushkova N. A., Levin L. Y., Zaitsev A. V. Inclusion of aerodynamic characteristics of ventilation systems in determination of recirculating ventilation parameters. MIAB. Mining Inf. Anal. Bull. 2024;(9):5-16. [In Russ]. DOI: 10.25018/0236_1493_2024_9_0_5.

Acknowledgements:

The study was supported by the Ministry of Science and Higher Education of the Russian Federation in the framework of a large research project, Agreement No. 075-15-2024-535 от 23.04.2024.

Issue number: 9
Year: 2024
Page number: 5-16
ISBN: 0236-1493
UDK: 622.4
DOI: 10.25018/0236_1493_2024_9_0_5
Article receipt date: 01.06.2024
Date of review receipt: 03.07.2024
Date of the editorial board′s decision on the article′s publishing: 10.08.2024
About authors:

N.A. Trushkova1, Leading Engineer, e-mail: aero.nadezhda@gmail.com,
L.Y. Levin1, Dr. Sci. (Eng.), Professor, Corresponding Member of Russian Academy of Sciences, Head of Department, e-mail: aerolog_lev@mail.ru,
A.V. Zaitsev1, Dr. Sci. (Eng.), Head of Laboratory, e-mail: aerolog_artem@gmail.com,
1 Mining Institute of the Ural Branch of the Russian Academy of Sciences, 614007, Perm, Russia.

 

For contacts:

A.V. Zaitsev, e-mail: aerolog_artem@gmail.com.

Bibliography:

1. Medvedev I. I., Krasnoshteyn A. E. Aerologiya kaliynykh rudnikov [Aerology of potash mines], Sverdlovsk, UrO AN SSSR, 1990, 252 p.

2. Krasnoshteyn A. E., Faynburg G. Z. Diffuzionno-setevye metody rascheta provetrivaniya shakht i rudnikov [Diffusion-network methods for calculating ventilation of mines and mines], Ekaterinburg, UrO RAN, 1992, 243 p.

3. McPherson M. J. Subsurface ventilation and Environmental engineering. Chapman & Hall, 2009, 824 p.

4. Saindon J.-P. Controlled recirculation of exhaust ventilation in Canadian Mines. A thesis submitted in partial fulfillment of the requirements for the degree of Master of Applied Science. The University of British Columbia, 1987, 177 p.

5. Kruglov Yu. V. Teoreticheskie i tekhnologicheskie osnovy postroeniya sistem optimal'nogo upravleniya provetrivaniem podzemnykh rudnikov [Theoretical and technological foundations for building optimal control systems for ventilation of underground mines], Doctor’s thesis, Perm, 2012, 42 p.

6. Bublik S. A. Analyzing the efficiency of dynamic ventilation control systems at potash mines. Gornoe ekho. 2021, no. 3, pp. 81—89. [In Russ]. DOI: 10.7242/echo.2021.3.15.

7. Semin M. A., Grishin E. L., Levin L. Yu., Zaitsev A. V. Automated control of ventilation of mines and mines. Problems, modern experience, directions of improvement. Journal of Mining Institute. 2020, vol. 246, pp. 623—632. [In Russ]. DOI: 10.31897/PMI.2020.6.4.

8. Semin M. A., Isaevich A. G., Trushkova N. A., Bublik S. A., Kazakov B. P. Calculation of the spread of harmful impurities in the systems of mine workings. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2022, no. 2, pp. 82—93. [In Russ]. DOI: 10.15372/FTPRPI20220208.

9. Trushkova N. A., Bublik S. A. Calculation of gas impurities propagation in mine workings based on convection-diffusion transport model. Gornoe ekho. 2021, no. 3, pp. 110—117. [In Russ]. DOI: 10.7242/echo.2021.3.20.

10. Pritchard C. J., Scott D. F. Examination of controlled recirculation implementation in an underground nonmetal mine. Mining Engineering. 2014, vol. 66, no. 12, pp. 49—55.

11. Pritchard C., Scott D., Frey G. Case study of controlled recirculation at a Wyoming trona mine. Transactions of Society for Mining, Metallurgy, and Exploration, Inc. 2013, vol. 334, no. 1, pp. 444—448.

12. Kazakov B., Trushkova N., Shalimov A., Grishin E. On the possibility of using controlled air recirculation in potash and metal mines. 20th International Multidisciplinary Scientific GeoConference SGEM 2020. 2020, vol. 20, book no. 1.2, pp. 203—210. DOI: 10.5593/sgem2020/1.2/s03.026.

13. Hall A. E., McHaina D. M., Hardcastle S. Controlled recirculation in Canadian underground potash mines. Mining Science and Technology. 1990, vol. 10, no. 3, pp. 305—314.

14. Kazakov B. P., Levin L. Ju., Shalimov A. V. Improving the efficiency of resource-saving ventilation systems for underground mines. Gornyi Zhurnal. 2014, no. 5, pp. 26—28. [In Russ].

15. Van den Berg L., Manns K., Bluhm S. Controlled primary ventilation recirculation and reuse with reconditioning — A strategy for deep mines. Proceedings of the 11th International Mine Ventilation Congress. Springer Singapore, 2019, pp. 27—41.

16. Maltsev S. V., Aleksandrova M. A., Gromova A. M. Impact of recirculation ventilation on reducing greenhouse gas emissions from a potash mine. News of the Tula state university. Sciences of Earth. 2023, no. 1, pp. 479—489. [In Russ].

17. Zaitsev A. V., Trushkova N. A. Recirculating ventilation in the presence of gas emission source and internal air leaks in operating space. MIAB. Mining Inf. Anal. Bull. 2022, no. 3, pp. 34—46. [In Russ]. DOI: 10.25018/0236_1493_2022_3_0_34.

18. Zaitsev A. V., Trushkova N. A. Study of parameters of recirculation ventilation of working areas taking into account different factors of air quantity calculation. Gornoe ekho. 2023, no. 2, pp. 82—89. [In Russ]. DOI: 10.7242/echo.2023.2.15.

19. Trushkova N. A. Study of aerodynamic parameters of mine ventilation networks to determine the parameters of recirculation ventilation. Gornoe ekho. 2020, no. 4, pp. 102—106. DOI: 10.7242/ echo.2020.4.21.

20. Kazakov B. P., Shalimov A. V., Trushkova N. A. Assessment of emergencies in return air system design. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2014, no. 1, pp. 132—137. [In Russ].

21. Kazakov B. P., Grishin E. L., Trushkova N. A. Stability of joint operation of recirculating fans in underground potash mines. MIAB. Mining Inf. Anal. Bull. 2021, no. 2, pp. 108—119. [In Russ]. DOI: 10.25018/0236-1493-2021-2-0-108-119.

22. Pavlov S. A. Application of partial air recirculation to reduce energy consumption for mine ventilation. Mining sciences: fundamental and applied issues. 2019, vol. 6, no. 2, pp. 212—217. [In Russ]. DOI: 10.15372/FPVGN2019060236.

23. Shalimov A. V. Teoreticheskie osnovy prognozirovaniya, profilaktiki i bor'by s avariynymi narusheniyami provetrivaniya rudnikov [Theoretical foundations of forecasting, prevention and fight against emergency disruptions in mine ventilation], Doctor’s thesis, Perm, 2012, 34 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.