Inclusion of fatigue processes in stress–strain analysis of geomaterials

The article presents an approach to the description of the stress–strain behavior of geomaterials in time with regard to fatigue processes. The studies into the mechanism of failure of geomaterials using the phase-field methods (PHM) are presented. The method of finding the order parameter using the Ginzburg–Landau equation is proposed, and the general solution of the equation is obtained. Using a tool of solving fractional differential equations, the rock fatigue phenomena are described as a case study of cyclic loading. With the help of a generalized constitutive fractional differential equation by Zener–Ishlinsky, the cyclic and quasistatic loading of a rock salt sample was investigated, and it was found that the cyclic loading led to a hysteresis phenomenon. In case of the cyclic loading, it is experimentally and theoretically proved that the increase in the order parameter and in the time of stress relaxation from cycle to cycle is reflective of the growing accumulation of defects in a sample, which leads to the failure of the latter. The research findings enable considering the order parameter as an indicator of damage level in a test rock sample. Numerical modeling of the quasistatic loading using the generalized Zener–Ishlinsky model demonstrates the nonlinear behavior of the model in the beginning of the loading and the elastic aftereffect later on.

Keywords: geomaterials, material fatigue, phase-field method (PFM), stress–strain behavior, order parameter, cyclic loading, quasistatic loading, numerical methods.
For citation:

Martyniuk A. R., Kharchenko A. V. Inclusion of fatigue processes in stress– strain analysis of geomaterials. MIAB. Mining Inf. Anal. Bull. 2024;(11):37-49. [In Russ]. DOI: 10.25018/0236_1493_2024_11_0_37.

Acknowledgements:
Issue number: 11
Year: 2024
Page number: 37-49
ISBN: 0236-1493
UDK: 622.02
DOI: 10.25018/0236_1493_2024_11_0_37
Article receipt date: 12.07.2024
Date of review receipt: 15.08.2024
Date of the editorial board′s decision on the article′s publishing: 10.10.2024
About authors:

A.R. Martyniuk, Cand. Sci. (Eng.), Assistant Professor, Moscow College of Transport (MIIT), 129626, Moscow, Russia, e-mail: marsash1973@gmail.com, ORCID ID: 0000-0002-8917-6752,
A.V. Kharchenko, Cand. Sci. (Eng.), Assistant Professor, Senior Researcher, Institute of Comprehensive Exploitation of Mineral Resources Russian Academy of Sciences, 111020, Moscow, Russia, e-mail: av-kharchenko@yandex.ru, ORCID ID: 0000-0003-3036-6663.

 

For contacts:

A.V. Kharchenko, e-mail: av-kharchenko@yandex.ru.

Bibliography:

1. Shankar V., Kumar D., and Subrahmanyam Ds. Impact and severity of deep excavations on stress tensors in mining. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2019, no. 2, pp. 43—48. [In Russ]. DOI: 10.15372/FTPRPI20190205.

2. Vasil’ev L. M. and Vasil’ev D. L. Theoretical ground for origination of normal horizontal stresses in rock masses. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2013, no. 2, pp. 81—90. [In Russ].

3. Gudkov V. M., Katkov G. A. Stability of rock formations. MIAB. Mining Inf. Anal. Bull. 2008, no. 2, pp. 119—121. [In Russ].

4. Nazarov L. A., Nazarova L. A. Estimate of the interchamber pillar stability based on the damage accumulation criterion. Journal of Mining Science. 2007, vol. 43, no. 6, pp. 575—584.

5. Mokhnachev M. P. Ustalost' gornykh porod [Fatigue of rocks], Moscow, Nauka, 1979, 152 p.

6. Rabotnov Yu. N. Equilibrium of an elastic medium with after-effect. Fractional Calculus and Applied Analysis. 2014, vol. 17, no. 3, pp. 684—696. DOI: 10.2478/s13540-014-0193-1.

7. Shermegor T. D. Teoriya uprugosti mikroneodnorodnykh sred [Theory of elasticity of microhomogenic medium], Moscow, Nauka, 1977, 400 p.

8. Shitikova M. V. Fractional operator viscoelastic models in dynamic problems of mechanics of solids: a review. Izvestiya Rossiyskoy akademii nauk. Mekhanika tverdogo tela. 2022, no. 1, pp. 3—40. [In Russ]. DOI: 10.31857/S0572329921060118.

9. Rossikhin Yu. A., Shitikova M. V. Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results. Applied Mechanics Reviews. 2010, vol. 63, no. 1, article 010801. DOI: 10.1115/1.4000563.

10. Mainardi F. Fractional calculus: Some basic problems in continuum and statistical mechanics. Fractals and Fractional Calculus in Continuum Mechanics. CISM Courses and Lectures No. 78, A. Carpinteri and F. Mainardi, eds., Springer, Wien, NY, 1997, pp. 291—348.

11. Fabrizio M., Giorgi C., Morro A. Two approaches to aging and fatigue models in viscoelastic solids. AAPP Atti della Accademia Peloritana dei Pericolanti, Classe di Scienze Fisiche, Matematiche e Naturali. 2019, vol. 97, no. 1. DOI: 10.1478/AAPP.97S1A7.

12. Caputo M., Fabrizio M. Damage and fatigue described by a fractional derivative model. Journal of Computational Physics. 2014, vol. 293, pp. 400—408. DOI: 10.1016/j.jcp.2014.11.012.

13. Amendola G., Fabrizio M., Golden J. M. Thermomechanics of damage and fatigue by a phase field model. Journal of Thermal Stresses. 2016, vol. 39, no. 5, pp. 487—499.

14. Lavrov A. V., Shkuratnik V. L., Filimonov Yu. L. Akustoemissionnyy effekt pamyati v gornykh porodakh [Acoustic-emission memory effect in rocks], Moscow, Izd-vo MGGU, 2004, 450 p.

15. Beltyukov N. L. Studying the Kaiser effect during modeling of rock loading conditions using the NX-borehole jack. Journal of Physics: Conference Series. 2021, vol. 1945, article 012023. DOI: 10.1088/1742-6596/1945/1/012023.

16. Blokhin D. I., Kharchenko A. V. Complex study of acoustoemission and thermomechanical effects in samples of rock salt at their cyclic deformation. MIAB. Mining Inf. Anal. Bull. 2021, no. 4-1, pp. 129—137. [In Russ]. DOI: 10.25018/0236_1493_2021_41_0_129.

17. Miehe C., Hofacker M., Welschinger F. A phase field model for rate-independent crack propagation: Robust algorithmic implementation based on operator splits. Computer Methods in Applied Mechanics and Engineering. 2010, vol. 199, pp. 2765—2778. DOI: 10.1016/j.cma.2010.04.011.

18. Hu S., Baskes M., Stan M. Phase-field modeling of microvoid evolution under elastic-plastic deformation. Applied Physics Letters. 2007, vol. 90, no. 8, pp. 1921—1923. DOI: 10.1063/1.2709908.

19. Ohno M., Matsuura K. Quantitative phase-field modeling for two-phase solidification process involving diffusion in the solid. Acta Materialia. 2010, vol. 58, no. 17, pp. 5749—5758. DOI: 10.1016/ j.actamat.2010.06.050.

20. Levitas V. I., Ozsoy I. B. Micromechanical modeling of stress-induced phase transformations. Part 1. Тhermodynamics and kinetics of coupled interface propagation and reorientation. International Journal of Plasticity. 2009, vol. 25, no. 2, pp. 239—280. DOI: 10.1016/j.ijplas.2008.02.004.

21. Voyiadjis G. Z. (ed.). Handbook of damage mechanics: nano to macro scale for materials and structures. New York, Springer, 2015, 1579 p.

22. Stepanova L. V., Igonin S. A. Description of deterioration processes: damage parameter of Y.N. Rabotnov: historical remarks, fundamental results and contemporary state. Vestnik of Samara University. Natural Science Series. 2014, no. 3 (114), pp. 97—114. [In Russ].

23. Uchaykin V. V. Metod drobnykh proizvodnykh: monografiya [The fractional derivative method], Ulyanovsk, Artishok, 2008, 510 p.

24. Sheinin V. I., Blokhin D. I., Maksimovich I. B., Sarana E. P. Experimental research into thermomechanical effects at linear and nonlinear deformation stages in rock salt specimens under cyclic loading. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2016, no. 6, pp. 15—22. [In Russ]. DOI: 10.1134/S1062739116061575.

25. Ogorodnikov E. N., Radchenko V. P., Ungarova L. G. Mathematical models of nonlinear viscoelasticity with operators of fractional integro-differentiation. PNRPU Mechanics bulletin. 2018, no. 2, pp. 147—161. [In Russ]. DOI: 10.15593/perm.mech/2018.2.13.

26. Blokhin D. I., Sheinin V. I. Thermomechancal effects in different geomaterials in limiting behavior of cyclic loading. IOP Conference Series: Earth and Environmental Science. 2021, vol. 773, no. 1, article 012055. DOI: 10.1088/1755-1315/773/1/012055.

27. Vysotin N. G., Vinnikov V. A. A case history of modeling elastic hysteresis of different-genotype rocks based on the Preisach model. MIAB. Mining Inf. Anal. Bull. 2023, no. 11, pp. 5—16. [In Russ]. DOI: 10.25018/0236_1493_2023_11_0_5.

28. Nadai A. Plastichnost' i razrushenie tverdykh tel. T. 1 [Plasticity and destruction of solids, vol. 1], Мoscow, 1954, 648 p.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.