Inclusion of rock mass fracturing in determination of in situ stress state by overcoring using multi-component displacement sensor

Mining is a complex process, one of the main stages of which is excavation operations. Increasing their safety is based on the implementation of a geomechanical prediction, the degree of reliability of which is largely determined by engineering surveys. In their implementation, a special place is occupied by methods for assessing the in situ stress state of the rock mass, based on drilling exploratory boreholes in the rock mass with the subsequent installation of high-precision measuring equipment for in-situ observations. This paper proposes an approach to taking into account the disturbance of the rock mass when determining its in situ stress state using the overcoring method with a multicomponent displacement sensor. Various fracturing parameters are considered: crack inclination angles relative to the longitudinal axis of the measuring borehole and the crack opening width, which is necessary for the correct determination of the properties of their elastic response. 3D numerical models reflecting the main technological stages of field tests are proposed. An approach to determining the effective deformation and strength properties of a fractured rock mass is described, taking into account its heterogeneity and anisotropy.

Keywords: fracturing, disturbance of rock massifs, natural stress state, overcoring, numerical modeling, equivalent material, geomechanical prediction, anisotropy.
For citation:

Belyakov N. A., Emelyanov I. A. Inclusion of rock mass fracturing in determination of in situ stress state by overcoring using multi-component displacement sensor. MIAB. Mining Inf. Anal. Bull. 2024;(12-1):145-164. [In Russ]. DOI: 10.25018/0236_1493_2024_ 121_0_145.

Acknowledgements:

The study was supported by the Russian Science Foundation, Project No. 23-17-00144.

Issue number: 12
Year: 2024
Page number: 145-164
ISBN: 0236-1493
UDK: 622.833.5
DOI: 10.25018/0236_1493_2024_121_0_145
Article receipt date: 17.06.2024
Date of review receipt: 07.08.2024
Date of the editorial board′s decision on the article′s publishing: 10.11.2024
About authors:

N.A. Belyakov1, Cand. Sci. (Eng.), Associate Professor, e-mail: Belyakov_NA@pers.spmi.ru, ORCID ID: 0000-0002-9754-501X,
I.A. Emelyanov1, Graduate Student, e-mail: Emelyanov_IA@pers.spmi.ru, ORCID ID: 0000-0002-8515-3629,
1 Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

I.A. Emelyanov, e-mail: Emelyanov_IA@pers.spmi.ru.

Bibliography:

1. Shabarov A. N., Kuranov A. D. Basic development trends in mining sector in complicating geotechnical conditions.Gornyi Zhurnal. 2023, no. 5, pp. 5—10. [In Russ]. DOI: 10.17580/gzh.2023.05.01.

2. Demenkov P. A., Romanova Е. L., Kotikov D. A. Stress–strain analysis of vertical shaft lining and adjacent rock mass under conditions of irregular contour. MIAB. Mining Inf. Anal. Bull. 2023, no. 11, pp. 33—48. [In Russ]. DOI: 10.25018/0236_1493_2023_11_0_33.

3. Karasev M. A., Sotnikov R. O. Prediction of the stress state of the shotcreting support under repeated seismic load. Journal of Mining Institute. 2021, vol. 251, pp. 626—638. [In Russ]. DOI: 10.31897/PMI.2021.5.2.

4. Jingyao G., Guangqi C., Zhijie W., Liping L., Yasuhiro M., Changze L., Hongyun F., Xinyan P., Yifan J. Numerical modeling of the failure process of the heterogeneous karst rock mass using the DDA-SPH method. Underground Space. 2023, vol. 13, pp. 1—22. DOI: 10.1016/j.undsp.2023.02.015.

5. Rafiee R., Ataei M., KhalooKakaie R., Jalali S., E., Sereshki F., Noroozi M. Numerical modeling of influence parameters in cavabililty of rock mass in block caving mines. International Journal of Rock Mechanics and Mining Sciences. 2018, vol. 105, pp. 22—27. DOI: 10.1016/j.ijrmms.2018.03.001.

6. Roshan H., Li D., Canbulat I., Regenauer-Lieb K. Borehole deformation based in situ stress estimation using televiewer data. Journal of Rock Mechanics and Geotechnical Engineering. 2023, vol. 15, pp. 2475—2481. DOI: 10.1016/j.jrmge.2022.12.016.

7. Mafakheri Bashmagh N., Lin W., Murata S., Yousefi F., Radwan A. E. Magnitudes and orientations of present-day in-situ stresses in the Kurdistan region of Iraq: Insights into combined strike-slip and reverse faulting stress regimes. Journal of Asian Earth Sciences. 2022, vol. 239, article 105398. DOI: 10.1016/j.jseaes.2022.105398.

8. Zherlygina E. S., Mustafin M. G., Vasiliev B. Yu., Nikolaev R. V. Determination procedure of linear parameters of movement processes from digital terrain models in Khibiny apatite–nepheline ore mining. Gornyi Zhurnal. 2023, no. 5, pp. 97—103. [In Russ]. DOI: 10.17580/gzh.2023.05.14.

9. Salmi E. F., Sellers E. J. A rock engineering system based abandoned mine instability assessment index with case studies for Waihi gold mine. Engineering Geology. 2022, vol. 310, article 106869. DOI: 10.1016/j.enggeo.2022.106869.

10. Fairhurst C. Stress estimation in rock: a brief history and review. International Journal of Rock Mechanics and Mining Sciences. 2003, vol. 40, pp. 957—973. DOI: 10.1016/j.ijrmms.2003.07.002.

11. Xiang Z., Moon T., Oh J., Si G., Canbulat I. Analytical investigations of in situ stress inversion from borehole breakout geometries. Journal of Rock Mechanics and Geotechnical Engineering. 2023. DOI: 10.1016/j.jrmge.2023.08.018.

12. Han Z., Wang C., Wang C., Jiao Y., Wang Y., Wang J., Huang X. Determination of geo-stress in deep strata incorporating borehole diametral deformation measurement and overcoring. Measurement. 2023, vol. 218, article 113217. DOI: 10.1016/j.measurement.2023.113217.

13. Campos L. A., Ferreira F., Flávio A., Costa T. A. V., Marques E. A. G. New GSI correlations with different RMR adjustments for an eastern mine of the Quadrilátero Ferrífero. Journal of South American Earth Sciences. 2020, vol. 102, article 102647. DOI: 10.1016/j.jsames.2020.102647.

14. Zhang Q., Huang X., Zhu H., Li J. Quantitative assessments of the correlations between rock mass rating (RMR) and geological strength index (GSI). Tunnelling and Underground Space Technology. 2019, vol. 83, pp. 73—81. DOI: 10.1016/j.tust.2018.09.015.

15. Hongke G., Bei J., Fenglin M., Qi W., Songlin C., Dahu Z., Wenrui W. Detection methods for strength deterioration and structural characteristics of fractured rock based on digital drilling.Measurement. 2024, vol. 233, article 114779. DOI: 10.1016/j.measurement.2024.114779.

16. Karimi S. L., Elmo D., Stead D. Improving DFN-geomechanical model integration using a novel automated approach. Computers and Geotechnics. 2019, vol. 105, pp. 228—248. DOI: 10.1016/j. compgeo.2018.10.005.

17. Li X., Li D., Xu Y., Feng X. A DFN based 3D numerical approach for modeling coupled groundwater flow and solute transport in fractured rock mass. International Journal of Heat and Mass Transfer. 2020, vol. 149, article 119179. DOI: 10.1016/j.ijheatmasstransfer.2019.119179.

18. Chenxi Z., Qinghua L., Zixin Z. Impact of fracture networks on the structural deformation of lined rock caverns under high internal gas pressure. Underground Space. 2024. DOI: 10.1016/j. undsp.2024.03.009.

19. Ziwen L., Ru Z., Jing X., Kun X., Li R., Zetian Z., Xinzhong W., Anlin Z. A new approach for 3D structure characterization of rock mass using an improved elliptical discrete fracture network model. Engineering Geology. 2024, vol. 339, article 107661. DOI: 10.1016/j.enggeo.2024.107661.

20. Kolapo P., Ogunsola N. O., Munemo P., Alewi D., Komolafe K., Giwa-Bioku A. DFN: An emerging tool for stochastic modelling and geomechanical design. Eng–Advances in Engineering. 2023, vol. 4, pp. 174—205. DOI: 10.3390/eng4010011.

21. Haryono I. S., Rogers S. F., Barrett S. V. L., McQueen L. B. Improved reliability in rock mass characterisation for underground support design —Discrete fracture network model and site observation. Tunnelling and Underground Space Technology. 2024, vol. 147, article 105740. DOI: 10.1016/j. tust.2024.105740.

22. Protosenya A., Vilner M. Assessment of excavation intersections’ stability in jointed rock masses using the discontinuum approach. Rudarsko-geološko-Naftni Zbornik. 2022, vol. 37, no. 2, pp. 137—147. DOI: 10.17794/rgn.2022.2.12.

23. Zou L., Mas Ivars D., Cvetkovic V. Impact of multiscale surface roughness on shear behavior of rock fractures. Tunnelling and Underground Space Technology. 2024, vol. 153, article 105974. DOI: 10.1016/j.tust.2024.105974.

24. Wan W., Li C. C. Microscopic and acoustic interpretations of the physics of rock burst and the difference in fracturing patterns in class I and class II rocks. Rock Mechanics and Rock Engineering. 2022, vol. 55, pp. 6841—6862. DOI: 10.1007/s00603-022-03015-2.

25. Shen J., Karakus M., Xu C. A comparative study for empirical equations in estimating deformation modulus of rock masses. Tunnelling and Underground Space Technology. 2012, vol. 32, pp. 245—250. DO: 10.1016/j.tust.2012.07.004.

26. Ahrami O., Javaheri Koupaei H., Ahangari K. Determination of deformation modulus and characterization of anisotropic behavior of blocky rock masses. Mining Science and Technology (Russia). 2024, vol. 9, no. 2, pp. 116—133. [In Russ]. DOI: 10.17073/2500-0632-2023-08-143.

27. Ilyinov M. D., Petrov D. N., Karmanskiy D. A., Selikhov A. A. Physical simulation aspects of structural changes in rock samples under thermobaric conditions at great depths. Mining Science and Technology (Russia). 2023, vol. 8, no. 4, pp. 290—302. [In Russ]. DOI: 10.17073/2500-0632-2023-09-150. EDN HGIPJW.

28. Belyakov N. A., Morozov K. V., Emelyanov I. A. Data processing in full-scale in-situ stress testing by overcoring. Gornyi Zhurnal. 2023, no. 5, pp. 89—96. [In Russ]. DOI: 10.17580/gzh.2023.05.13.

29. Morozov K. V., Bakhtin E. V., Demekhin D. N., Bakumenko S. V., Iakovlev N. A. Patent RU 2763565, IPC E21C 39/00 (2006.01). 30.12.2021. [In Russ].

30. Brown E. T. Rock characterization testing and monitoring. ISRM Suggested Methods. 1981, pp. 2007—2014. DOI: 10.1007/978-3-319-07713-0.

31. Zuev B. Y. Methodology of modeling nonlinear geomechanical processes in blocky and layered rock masses on models made of equivalent materials. Journal of Mining Institute. 2021, vol. 250, pp. 542—552. [In Russ]. DOI: 10.31897/PMI.2021.4.7.

32. Iovlev G. A., Protosenya A. G., Petrov N. E. Determination of parameters of soil constitutive models based on field test data. Soil Mechanics and Foundation Engineering. 2024, vol. 60, pp. 528—534. DOI: 10.1007/s11204-024-09925-3.

33. Stetukha V. A., Zheleznyak I. I. Methodology for calculating the stability of the polymer operating string in permafrost. Journal of Mining Institute. 2020, vol. 241, pp. 22. [In Russ]. DOI: 10.31897/ PMI.2020.1.22.

34. Bouhfid N., Raji M., Boujmal R., Essabir H., Bensalah M., Bouhfid R., Qaiss A. 5-Numerical modeling of hybrid composite materials. Woodhead Publishing Series in Composites Science and Engineering. 2019, pp. 57—101. DOI: 10.1016/B978-0-08-102289-4.00005-9.

35. Liu Z., Xia Y. Development of a numerical material model for axial crushing mechanical characterization of woven CFRP composites. Composite Structures. 2019, vol. 230, article 111531. DOI: 10.1016/j.compstruct.2019.111531.

36. Morozov K. V., Demekhin D. N., Bakhtin E. V. Multicomponent strain gauges for assessing the stress-strain state of a rock mass. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 80—97. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_80.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.