Selection of ventilation method for deep open-pit mines in the Arctic with regard to variability of meteorological data on atmospheric air

The study focuses on impact exerted by variability of meteorological data on atmospheric air on ventilation quality in deep open-pit gold mines. The change in direction and the increase in velocity of air flow across the pit leads to the enlargement of dead-air spaces and worsens the air quality in the pit. Modeling of velocity and temperature fields in the pit should use Ansys Fluent in combination with Minitab for interpreting data of atmospheric air statistics. The objective of the research is to predict probability of recirculation zones in the pit under varied meteorological data on atmospheric air. For estimating specifics of open-pit mine atmosphere, it is sufficient to perform mathematical aerodynamics modeling. The methodology of the aerodynamics modeling with regard to the open pit geometry, and the wind flow temperature, velocity and direction is proposed. The zones of air flow recirculation appear to be typical of all test meteorological conditions of open air and deteriorate natural ventilation of open pits. It is possible to enhance ventilation efficiency of open-pit mines by advanced prediction of probable recirculation zones depending on variation in meteorological data of open air and by selecting the most favorable periods to implement production processes accompanied with essential emissions of dust and gaseous substances. The method of aerodynamics control in open pit mines is proposed, and its application efficiency is assessed.

Keywords: mathematical modeling, Ansys, stratification, natural ventilation, recirculation zones, atmospheric parameters, Extreme North, air quality prediction.
For citation:

Gendler S. G., Borisovsky I. A. Selection of ventilation method for deep open-pit mines in the Arctic with regard to variability of meteorological data on atmospheric air. MIAB. Mining Inf. Anal. Bull. 2022;(8):38-55. [In Russ]. DOI: 10.25018/0236_1493_2022_8_0_38.

Issue number: 8
Year: 2022
Page number: 38-55
ISBN: 0236-1493
UDK: 622.4
DOI: 10.25018/0236_1493_2022_8_0_38
Article receipt date: 04.04.2022
Date of review receipt: 14.06.2022
Date of the editorial board′s decision on the article′s publishing: 10.07.2022
About authors:

S.G. Gendler1, Dr. Sci. (Eng.), Professor, e-mail:, ORCID ID: 0000-0002-7721-7246,
I.A. Borisovsky1, Graduate Student, e-mail:, ORCID ID: 0000-0002-8560-5863,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

S.G. Gendler, e-mail:


1. Nikulin A. N., Dolzhikov I. N., Klimova I. V., Smirnov Yu. G. Assessment of the effectiveness and efficiency of the occupational health and safety management system at a mining enterprise. Occupational Safety in Industry. 2021, no. 1, pp. 66—72. [In Russ]. DOI: 10.24000/04092961-2021-1-66-72.

2. Rudakov M. L., Babkin R. S., Medova E. A. Improvement of working conditions of mining workers by reducing nitrogen oxide emissions during blasting operations. Applied Sciences. 2021, no. 11, pp. 1—13. [In Russ].

3. Gendler S. G., Borisovsky I. A. Aerodynamic control in open pit gold mining. MIAB. Mining Inf. Anal. Bull. 2021, no. 2, pp. 99—107. [In Russ]. DOI: 10.25018/0236-1493-2021-20-99-107.

4. Rogalev V. A., Yastrebova K. N. Methodological features of the intensification of natural ventilation of open pits. Journal of Mining Institute. 2014, vol. 207, pp. 131—133. [In Russ].

5. Fomin S. I., Bazarova E. I. Sensitivity analysis of ore open pit parameters at the preliminary design stage. Journal of Mining Institute. 2015, vol. 216, pp. 76—81. [In Russ].

6. Yuan Wang, Cuifeng Du Distribution law of the temperature inversion layer in a deep openpit mine. ACS Omega. 2021, vol. 6, no. 12, pp. 8693—8699. DOI: 10.1021/acsomega.lc00674.

7. Fomin S. I. Substantiation of technological solutions in the organization of mining of ore open pits. Journal of Mining Institute. 2016, vol. 221, pp. 644—650. [In Russ]. DOI: 10.18454/ PMI.2016.5.644.

8. Wang Zhi-Ming, Zhou Wei, Jiskani Izhar Mithal, Ding Xiao-Hua, Liu Zhi-Chao, Qiao YanZhen, Luan Boyu Dust reduction method based on water infusion blasting in open-pit mines: a step toward green mining. Energy sources part а-recovery utilization and environmental effects. 2021, pp. 1—16. DOI: 10.1080/15567036.2021.1903118.

9. Bitkolov N. Z., Medvedev I. I. Aerologiya kar'erov [Aerology of quarries], Nedra, 1992, 263 p.

10. Nikitin V. S., Bitkolov N. Z. Provetrivanie kar'erov [Ventilation of quarries], Nedra, 1975, 248 p.

11. Dragunskiy O. N. Breaking inversions in open pit mines using induced ventilation facilities. MIAB. Mining Inf. Anal. Bull. 2019, no. 5, pp. 13—21. [In Russ]. DOI: 1025018/02361493-2019-05-0-13-21.

12. Gridina E. B., Andreev R. E. Mathematical modeling based on CFD method of wind currents in combined working out of the Olenegorsky pit in the Flowvision software package. International Review on Modelling and Simulations. 2017, vol. 10, no. 1, pp. 62—69. [In Russ]. DOI: 10.15866/iremos.vl0il.l 1101.

13. Amosov P. V., Kozyrev S. A. and Nazarchuk O. V. Development of a computer model of the atmosphere aetermdynamics of a quarry in Ansys Fluent. Bulletin of the Saint Petersburg State Institute of Technology (Technical University). 2018, no. 44, pp. 121—125. [In Russ]. DOI: 10.15217/issn1998984-9.2018.44.121.

14. Amosov P. V., Novozhilov N. V. Investigation of the influence of the temperature gradient on the formation of meteorological fields in the atmosphere of a quarry (based on numerical modeling). MIAB. Mining Inf. Anal. Bull. 2015, special edition 56, pp. 528—534. [In Russ].

15. Kozyrev S. A., Skorokhodov V. F., Nikitin R. M., Amosov P. V., Massan V. V. 3D computer modeling of the nature of the distribution of air flows on the surface and in the quarry space of deep quarries, taking into account the real terrain and the scale of the quarry. MIAB. Mining Inf. Anal. Bull. 2015, special edition 56, pp. 399—403. [In Russ].

16. Shakhrai S. G., Kurchin G. S., Sorokin A. G. New technical solutions for ventilation of deep quarries. Journal of Mining Institute. 2019, vol. 240, pp. 654—659. [In Russ]. DOI: 10.31897/PMI.2019.6.654.

17. Kozyrev S. A., Amosov P. V. Modeling of aerodynamic processes in deep quarries. Glubokie kar'ery: sbornik dokladov Vserossiyskoy nauchno-tekhnicheskoy konferentsii s mezhdunarodnym uchastiem [Deep careers: a collection of reports of the All-Russian Scientific and Technical Conference with international participation], Apatity, 2012, pp. 470—474. [In Russ].

18. Li Lin, Zhang Ruixin, Sun Jiandong, He Qian, Kong Lingzhen, Liu Xin Monitoring and prediction of dust concentration in an open-pit mine using a deep-learning algorithm. Journal of Environmental Health Science and Engineering. 2021, vol. 19, pp .401—414. DOI: 10.1007/ s40201-021-00613-0.

19. Wang Yuan, Du Cuifeng, Xu Haiyue Key factor analysis and model establishment of blasting dust diffusion in a deep. Sunken open-pit mine. ACS Omega. 2021, vol. 6, no. 1, pp. 448— 455. DOI: 10.1021/acsomega.0c04881.

20. Huang Z., Ge S., Jing D., Yang L. Numerical simulation of blasting dust pollution in open-pit mines. Applied Ecology and Environmental Research. 2019, vol. 17, no. 5, pp. 10313— 10333. DOI: 10.15666/aeer/1705_1031310333.

21. Abdulwahid M. A., Kareem H. J., Almudhaffar M. A. Numerical analysis of two phase flow patterns in vertical and horizontal pipes. WSEAS Transactions on Fluid Mechanics. 2017, vol. 12, pp. 131—140.

22. Gendler S. G., Leisle A. V., Borisovsky I. A. Patent RU 2021111806, 26.04.2021. [In Russ]

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.