Removal of oil contaminants by deformation of ice

а new method of removing oil spills from under the ice is proposed. It consists in deformation of the ice cover in the form of a dome by applying force created, for example, by a pontoon located under the ice when it is filled with air. As a result of different densities of oil and water, the oil is displaced by water into the resulting ice dome, from which the oil is pumped out through a hole. The physical and mechanical properties of the ice cover are presented, proving the possibility of using the proposed method in the Arctic. The schemes of deployment and operation of mobile equipment for removing oil spills from under the ice are proposed. It is shown that the proposed method for eliminating accidental oil spills can be used to collect and localize oil spills, as well as to create preventive zones that stop their spread.

Keywords: Arctic, oil spills, ice cover, deformation, dome, physical and mechanical properties, vortex funnel, collection and localization.
For citation:

Mingazhev A. D., Shchipachev A. M., Mingazheva A. A. Removal of oil contaminants by deformation of ice. MIAB. Mining Inf. Anal. Bull. 2022;(10-2):193—200. [In Russ]. DOI: 10.25 018/0236_1493_2022_102_0_193.

Acknowledgements:
Issue number: 10
Year: 2022
Page number: 192-200
ISBN: 0236-1493
UDK: 622
DOI: 10.25018/0236_1493_2022_102_0_193
Article receipt date: 20.03.2022
Date of review receipt: 15.07.2022
Date of the editorial board′s decision on the article′s publishing: 10.09.2022
About authors:

Mingazhev A. D.1 , Cand. Sci. (Eng.), Docent, e-mail: mad-20007@yandex.ru, ORCID ID: 0000-0003-1391-7013;
Shchipachev A. M.2, Dr. Sci. (Eng.), Professor, Head of Department, e-mail: schipachev_ am@pers.spmi.ru, ORCID ID: 0000-0001-6148-6073;
Mingazheva A. A.3 , assistant, e-mail: adventureseeker@list.ru, ORCID ID: 0000-0003-2118-9220;
1 Ufa State Petroleum Technical University, Russia, Ufa, 1 Cosmonauts Str.;
2 Saint Petersburg Mining University, Russia, Saint Petersburg, Vasilievsky Island, 21Line, 2;
3 Ufa State Aviation Technical University, Russia, Ufa, 12 K. Marx Str.

 

For contacts:

A. D. Mingazhev, e-mail: mad-20007@yandex.ru.

Bibliography:

1. Rybak, Y., Khayrutdinov, M., Kongar-Syuryun, C., Tyulyayeva, Y. Resource-saving technologies for development of mineral deposits.Sustainable Development of Mountain Territories, 13(3), 405−415. DOI: 10.21177/1998−4502−2021−13−3-406−415.

2. Tcvetkov, P., Cherepovitsyn, A., & Fedoseev, S. (2019). The Changing Role of CO2 in the Transition to a Circular Economy: Review of Carbon Sequestration Projects. Sustainability, 11(20), 5834. DOI: 10.3390/su11205834.

3. Zhukovskiy, Y., Tsvetkov, P., Buldysko, A., et al. (2021). Scenario modeling of sustainable development of energy supply in the Arctic. Resources, 10(12), 124. DOI: 10.3390/resources10120124.

4. Litvinenko, V. S. (2020). Foreword: Sixty-year Russian history of Antarctic subglacial lake exploration and Arctic natural resource development. Geochemistry,1, 1−4. DOI: 10.1016/j.chemer.2020.125652.

5. Buslaev, G., Morenov, V., Konyaev, Y. (2021). Reduction of carbon footprint of the production and field transport of high-viscosity oils in the Arctic region. Chemical Engineering and Processing Process Intensification, 02552701, 159. DOI: 10.1016/j.cep.2020.108189.

6. Ilinova, A., Solovyova, V., Yudin, S. (2020). Scenario-based forecasting of Russian Arctic energy shelf development, Energy Reports, 21100389511, 6, 1349−1355. DOI: 10.1016/j.egyr.2020.11.022.

7. Ilinova, A., Chanysheva, A. (2020). Algorithm for assessing the prospects of offshore oil and gas projects in the Arctic, Energy Reports, 21100389511, 6, 504−509. DOI: 10.1016/j.egyr.2019.11.110.

8. Samylovskaya, E., Makhovikov, A., Lutonin, A. (2022). Digital Technologies in Arctic Oil and Gas Resources Extraction: Global Trends and Russian Experience. Resources, 21100808642, 11. DOI: 10.3390/resources11030029.

9. Dmitrieva, D., Romasheva, N. (2020). Sustainable development of oil and gas potential of the arctic and its shelf zone: The role of innovations. Journal of Marine Science and Engineering, 21100830140, 8, 1−18. DOI: 10.3390/jmse8121003.

10. Chromcak, J., Farbak, M., Ivannikov, A., Sasik, R., Dibdiakova, J. Remote Sensing Data Analysis for the Ecological Stability Purposes. IOP Conference Series: Earth and Environmental Science, 2021, 906(1), 012068. DOI 10.1088/1755−1315/906/1/012068.

11. Mingazhev, A. D. and other RF Patent no. 2604931. IPC E02B 15/04. Method and device for collecting oil and oil products from under the ice cover of a reservoir. application no. 2015119119/13. 2016 Nov.

12. Porozhnyakov, B. C. Ice crossings. Moscow: Avtotransizdat, 1963, 88.

13. Panfilov, D. F. Bending of ice cover by short-term static load. Proceedings of coordination meetings on hydraulic engineering. Moscow: Energy, 1964.

14. Voitkovsky, K. F. Mechanical properties of ice. Moscow: Publishing house of the Academy of Sciences of the USSR, 1960, 564.

15. Gold, L. W. Canadian Journal of civil engineering 15, 1988.

16. Haynes, F. D. Effect of temperature on the strength of snow-ice, Department of the Army, Cold regions research and engineering laboratory, Corps of Engineers, CRREL Report 78−27. Hanover. New Hampshire, 1978.

17. Andrews, R. M., Partridge L. (1985). The effect of reproductive activity on the longevity of male Drosophila melanogaster is not caused by an acceleration of ageing. Journal of Glaciology, 31 (5), 1985,393−395. DOI: 10.1016/0022−1910(85)90084−8.

18. Schulson, E. M. (1999). The Structure and Mechanical Behavior of Ice. Journal of the minerals. Metals. Materials Society, 51.

19. Petrovic J. J. (2003). Review properties of ice and snow. Journal of materials science. 38, 1−6.

20. The Abaqus documentation. (2019). Abaqus. Materials. Inelastic Mechanical Properties. Other plasticity models.Extended Drucker-Prager models. Dassault Systèmes Simulia Corp.

21. Hilding D., Forsberg J., Gürtner A. (2012). Simulation of Loads from Drifting Ice Sheets on Offshore Structures. Proceedings of 12th International LS-DYNA Users Conference. Detroit, USA. Livermore Software Technology Corporation.

22. Zhabin A. B., Polyakov A. V., Averin E. A., Linnik Yu. N., Linnik V. Yu. Integrated effect of size on ultimate compressive strength of rock samples. MIAB. Mining Inf. Anal. Bull. 2022;(8):5–13. [In Russ]. DOI: 10.25018/0236_1493_2022_8_0_5.

23. Schulson E. M., Duval P. (2009). Creep and fracture of ice. Cambridge Univ. Press, 417 (Access date: 10.02.2022).

24. Gürtner, A., Bjerkås, M., Forsberg, J., Hilding, D. (2010). Numerical modelling of a full scale ice event. Proceedings of 20th IAHR Intern. Symposium on Ice. Lahti, Finland, June 14–17, 2010. Local Organising Committee of the 20th IAHR International Symposium on Ice. URL: https://www.researchgate.net/publication/282330043_Numerical_modelling_ of_a_full_scale_ice_event — 27.04.2020 (Access date: 10.02.2022).

25. Hilding, D., Forsberg, J., Gürtner, A. (2011). Simulation of ice action loads on offshore structures. Proceedings of 8th European LS-DYNA Users Conference. Strasbourg, France, DYNAmore GmbH, 2011. URL: https://www.dynalook.com/conferences/8th-european-lsdyna-conference/session-17/Session17_Paper 5.-pdf (Access date: 10.02.2022).

26. Pashkevich M. A., Bykova M. V. Improvability of measurement accuracy in determining the level of soil contamination with petroleum products. MIAB. Mining Inf. Anal. Bull. 2022;(4):67-86. [In Russ]. DOI: 10.25018/0236_1493_2022_4_0_67

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.