Growth of low-dimensional structure noble metals in carbonaceous materials under microwave treatment

Development of new and efficient technologies in the field of processing of noble metal-bearing ores is a topical task because of quality degradation of ore materials and due to involvement of refractory and double refractory ore into production, which makes extraction of noble metals from such ore ineffective. A promising trend of enhanced recovery of valuable components is high-energy deposition techniques, such as microwave treatment, which are advantageous for selective heating. The test subject of this study is carbonaceous sulfidic gold ore. In terms of the produced carbonaceous concentrates of flotation, the substantiation is provided for the possible growth of low-dimensional structure noble metals using microwave treatment with addition of magnetite to create active centers of local heating. It is shown that it is possible to grow noble metal particles to the sizes of 40–60 µm, which enables their recovery. The analysis of the effect exerted by microwave treatment on barren rocks in composition of flotation concentrates in terms of quartz and calcite disclosed an increase in the free surface energy of the test samples. The influence of microwave heating on pyrite particles is determined, the transition of iron sulfides to iron oxides owing to desulfurization is described. The particles of sulfidic metals can also become active centers of local heating during treatment and facilitate growth of noble metal particles.

Keywords: microwave treatment, carbonaceous raw material, refractory ore, flotation, lowdimensional structure gold, carbonaceous matter, noble metals, sulfidic minerals.
For citation:

Afanasova A. V., Aburova V. A. Growth of low-dimensional structure noble metals in carbonaceous materials under microwave treatment. MIAB. Mining Inf. Anal. Bull. 2024;(1):20-35. [In Russ]. DOI: 10.25018/0236_1493_2024_1_0_20.

Acknowledgements:

The study was supported by the Russian Science Foundation, Project No. 23-47-00109.

Issue number: 1
Year: 2024
Page number: 20-35
ISBN: 0236-1493
UDK: 622.7
DOI: 10.25018/0236_1493_2024_1_0_20
Article receipt date: 03.05.2023
Date of review receipt: 18.08.2023
Date of the editorial board′s decision on the article′s publishing: 10.12.2023
About authors:

A.V. Afanasova1, Cand. Sci. (Eng.), Assistant Professor, e-mail: Afanasova_av@pers.spmi.ru, ORCID ID: 0000-0002-8451-2489,
V.A. Aburova1, Graduate Student, e-mail: lera.aburova@mail.ru, ORCID ID: 0000-0002-1364-5006,
1 Empress Catherine II Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

A.V. Afanasova, e-mail: Afanasova_av@pers.spmi.ru.

Bibliography:

1. Litvinenko V. S., Sergeev I. B. Innovations as a factor in the development of the natural resources sector. Studies on Russian Economic Development. 2019, vol. 30, no. 6, pp. 637—645. DOI: 10.1134/S107570071906011X.

2. Petrov G. V., Fokina S. B., Boduen A. Y., Zotova I. E., Fidarov B. F. Arsenic behavior in the autoclave-hydrometallurgical processing of refractory sulfide gold-platinum-bearing products. International Journal of Engineering and Technology (UAE). 2018, vol. 7, no. 2, pp. 35—39. DOI: 10.14419/ijet.v7i2.2.9897.

3. Fedotov P. K., Senchenko A. E., Fedotov K. V., Burdonov A. E. Studies of enrichment of sulfide and oxidized ores of gold deposits of the Aldan shield. Journal of Mining Institute. 2020, vol. 242, pp. 218—227. [In Russ]. DOI: 10.31897/PMI.2020.2.218.

4. Aleksandrova T. N., O’Connor C. Processing of platinum group metal ores in Russia and South Africa: current state and prospects. Journal of Mining Institute. 2020, vol. 244, pp. 462—473. [In Russ]. DOI: 10.31897/pmi.2020.4.9.

5. Efimov D. A., Gospodarikov A. P. Technical and technological aspects of the use of Reuleaux triangular profile rolls in crushing units in the ore processing plant. MIAB. Mining Inf. Anal. Bull. 2022, no. 10-2, pp. 117—126. [In Russ]. DOI: 10.25018/0236_1493_2022_102_0_117.

6. Aleksandrova T., Nikolaeva N., Lieberwirth H., Aleksandrov A. Selective desintegration and concentration: Theory and practice. E3S Web of Conferences. 2018, vol. 56, article 03001. DOI: 10.1051/e3sconf/20185603029.

7. Romashev A. O., Nikolaeva N. V., Gatiatullin B. L. Adaptive approach formation using machine vision technology to determine the parameters of enrichment products deposition. Journal of Mining Institute. 2022, vol. 256, pp. 677—685. [In Russ]. DOI: 10.31897/PMI.2022.77.

8. Islamov S., Grigoriev A., Beloglazov I., Savchenkov S., Gudmestad O. T. Research risk factors in monitoring well drilling — A case study using machine learning methods. Symmetry. 2021, vol. 13, no. 7, article 1293. DOI: 10.3390/sym13071293.

9. Yakovleva T. A., Romashev A. O., Mashevsky G. N. Digital technologies for optimizing the dosing of flotation reagents during flotation of non-ferrous metal ores. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 175—188. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_175.

10. Yushina T. I., Malyshev O. A., Shchelkunov S. A. Flotation of gold-bearing ores of nonferrous metals using acetylene-based reagents. Tsvetnye Metally. 2017, no. 2, pp. 13—19. [In Russ]. DOI: 10.17580/tsm.2017.02.01.

11. Owusu C., Agorhom E. A., Fosu S., Budu-Arthur E. Adsorption studies of sulphidic refractory gold ore. Powder Technology. 2020, vol. 375, pp. 310—316. DOI: 10.1016/j.powtec. 2020.07.063.

12. Aleksandrova T. N., Kuznetsov V. V. A new approach to determining aeration intensity in flotation. Journal of Mining Science. 2022, vol. 58, no. 5, pp. 812—822.

13. Zhou C., Zhao Y., Liu C., Li Y., Gao Z., Fan X., Aleksandrova T., Duan C. Fluidization expansion of novel generation dense medium and flow regime transition in gas-solid separation fluidized bed. Fundamental Research. 2023. DOI: 10.1016/j.fmre.2023.02.008.

14. Afanasova A. V., Aburova V. A., Prokhorova E. O., Lushina E. A. Investigation of the influence of depressors on flotation-active rock-forming minerals in sulphide goldbearing ore flotation. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 161—174. [In Russ]. DOI: 10.2501 8/0236_1493_2022_62_0_161.

15. Ivanik S. A., Ilyukhin D. A. Flotation extraction of elemental sulfur from gold-bearing cakes. Journal of Mining Institute. 2020, vol. 242, pp. 202—208. [In Russ]. DOI: 10.31897/ PMI.2020.2.202.

16. Aleksandrova T. N., Kuznetsov V. V., Ivanov E. A. Investigation of the water hardness ions impact on the copper-nickel ores flotation probability. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-1, pp. 263—278. [In Russ]. DOI: 10.25018/0236_1493_2022_61_0_263.

17. Zakharov B. A., Meretukov M. A. Zoloto: upornye rudy [Gold: refractory ores], Moscow, ID «Ruda i Metally», 2013, 452 p.

18. Chanturiya V. A., Bunin I. Z. Advances in pulsed power mineral processing technologies. Minerals. 2022, vol. 12, no. 9, p. 1177. DOI: 10.3390/min12091177.

19. Karami E., Kuhar L., Bona A., Nikoloski A. N. A review of electrokinetic, ultrasonic and solution pulsing methods for mass transfer enhancement in in-situ processing. Minerals Engineering. 2021, vol. 170, article 107029. DOI: 10.1016/j.mineng.2021.107029.

20. Eremina O. V., Brichkin V. N. Microwave activation of phyllosilicates. Nanofizika i Nanomaterialy. Sbornik nauchnykh trudov Mezhdunarodnogo seminara [Nanophysics and Nanomaterials. Collection of scientific papers of the International Seminar], 2020, pp. 133—139.

21. Gholami H., Rezai B., Mehdilo A., Hassanzadeh A., Yarahmadi M. Effect of microwave system location on floatability of chalcopyrite and pyrite in a copper ore processing circuit. Physicochemical Problems of Mineral Processing. 2020, vol. 56, no. 3, pp. 432—448. DOI: 10.37190/PPMP/118799.

22. Li H., Long H., Zhang L., Yin S., Li S., Zhu F., Xie H. Effectiveness of microwaveassisted thermal treatment in the extraction of gold in cyanide tailings. Journal of Hazardous Materials. 2020, vol. 384, article 121456. DOI: 10.1016/j.jhazmat.2019.121456.

23. Charikinya E., Bradshaw S. M. An experimental study of the effect of microwave treatment on long term bioleaching of coarse, massive zinc sulphide ore particles. Hydrometallurgy. 2017, vol. 173, pp. 106—114. DOI: 10.1016/j.hydromet.2017.08.001.

24. Mel'nikov N. V., Rzhevskiy V. V., Protod'yakonov M. M. Spravochnik (kadastr) fizicheskikh svoystv gornykh porod [Handbook (cadastre) of physical properties of rocks], Moscow, Nedra, 1975, 279 p.

25. Gulyashinov P. A., Paleev P. L., Gulyashinov A. N. The research of the process of thermal decomposition of pyrite and scorodite. International Journal of Applied and Fundamental Research. 2017, no. 12-1, pp. 22—27. [In Russ].

26. On H., Kim H., Myung E., Lim D., Park C. Thermal decomposition of arsenopyrite by microwave heating and the effect of removal arsenic with wet-magnetic separation. Journal of the Mineralogical Society of Korea. 2017, vol. 30, no. 3, pp. 103—112. DOI: 10.9727/ jmsk.2017.30.3.103.

27. Hayashi M., Takeda K., Kashimura K., Watanabe T., Nagata K. Carbothermic reduction of hematite powders by microwave heating. ISIJ International. 2013, vol. 53, no. 7, pp. 1125— 1130. DOI: 10.2355/isijinternational.53.1125.

28. Gzogyan S. R., Chanturiya E. L. The current state of the theory and practice of obtaining high-quality magnetite concentrates. MIAB. Mining Inf. Anal. Bull. 2010, no. 5, pp. 63—69.

29. Kingman S. W., Rowson N. A. Microwave treatment of minerals-a review. Minerals Engineering. 1998, vol. 11, no. 11, pp. 1081—1087. DOI: 10.1016/S0892-6875(98)00094-6.

30. Kabanov A. A. Effect of water on the thermal stability of CaCO3. Zhurnal fizicheskoy khimii. 2001, vol. 75, no. 4, pp. 746—748. [In Russ].

31. Golovenko J. V., Gafner S. L., Gafner I. Ya. Computer analysis of structural properties of gold nanoclusters. Fundamental’nye problemy sovremennogo materialovedenia. 2010, vol. 7, no. 2, pp. 11—16. [In Russ].

32. Golovenko J. V., Gafner S. L., Gafner I. Ya. A study of the structural states of gold nanoclusters by molecular dynamics. Fundamental’nye problemy sovremennogo materialovedenia. 2008, vol. 8, no. 2, pp. 83—86. [In Russ].

33. Aleksandrova T. N., Nikolaeva N. V., Afanasova A. V., Romashev A. O., Aburova V. A., Prokhorova E. O. Extraction of low-dimensional structures of noble and rare metals from carbonaceous ores using low-temperature and energy impacts at succeeding stages of raw material transformation. Minerals. 2023, vol. 13, no. 1. DOI: 10.3390/min13010084.

34. Aleksandrova T. N., Afanasova A. V., Aleksandrov A. V. Microwave treatment to reduce refractoriness of carbonic concentrates. Journal of Mining Science. 2020, vol. 56, no. 1, pp. 136—141. DOI: 10.1134/S1062739120016576.

35. Lambert Jr. J. M., Simkovich G., Walker Jr. P. L. Kinetics and mechanism of the pyriteto-pyrrhotite transformation. Metallurgical and Materials Transactions B: Process Metallurgy and Materials Processing Science. 1998, vol. 29, no. 2, pp. 385—396. DOI: 10.1007/s11663998-0115-x.

36. Shapovalov N. A., Bushueva N. P., Panova O. A. Stability of pyrite during firing of carbonate-silica mixture. Vestnik Belgorodskogo gosudarstvennogo tekhnologicheskogo universiteta im. V.G. Shukhova. 2015, no. 2, pp. 162—164. [In Russ].

37. Aleksandrova T. N., Afanasova A. V., Aburova V. A. Patent RU 2799219C1, 04.07.2023. [In Russ].

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.