Abatement of the effect of slug in ventilation shafts by means of condensed moisture control and ventilation system management in mines

The article presents the developed method to control condensed moisture and ventilation system parameters in mines to minimize the slug or the blanket-effect in ventilation shafts. The model results on nonsteady processes of the blanket-effect formation are described, and the characteristic times of condensed moisture accumulation in a shaft depending on the return air flow velocity, location of a water production source and its intensity are calculated. In terms of a copper–nickel mine, the quantitative evaluation is performed for the shift of the main fan set point under the incremental air drag generated by condensed moisture in the shaft. It is shown that abatement of the blanket effect on the mine ventilation system should include activities targeted at reduction in condensed moisture accumulation in the shaft. The practicable methods of the main fan performance management with a view to minimizing the slug effect in the shaft are identified. The choice of a particular method depends on the maximal fan capacity and on the actual values of water inflows in the shaft. It is said that if a fan has a reserve to operate at an increased capacity, then the blanket effect minimization involves an increase in rotation frequency of the impeller to shift the set point of the fan rightwards the influence zone of the blanket effect. If a fan has no reserves to overcome a potential slug barrier, while beyond the barrier the fan is capable to operate stably at a very high air delivery, it is advised to reduce temporarily the rotation frequency of the impeller in order to discharge moisture to a sink hole and, then, to recover the previous frequency, which can eliminate potential formation of a slug. The shift of the fan set point is modeled for each method application.

Keywords: mine ventilation, ventilation shaft, water drip, condensed moisture, slug, modeling, ventilation management, main fan.
For citation:

Kolesov E. V., Semin M. A. Abatement of the effect of slug in ventilation shafts by means of condensed moisture control and ventilation system management in mines. MIAB. Mining Inf. Anal. Bull. 2024;(5):62-78. [In Russ]. DOI: 10.25018/0236_1493_2024_5_0_62.


The study was supported by the Russian Federation for Basic Research, Project No. 19-35-90076, and by the Ministry of Science and Higher Education of the Russian Federation, R&D Project Registration No. 122030100425-6.

Issue number: 5
Year: 2024
Page number: 62-78
ISBN: 0236-1493
UDK: 622.4
DOI: 10.25018/0236_1493_2024_5_0_62
Article receipt date: 12.10.2023
Date of review receipt: 13.02.2024
Date of the editorial board′s decision on the article′s publishing: 10.04.2024
About authors:

E.V. Kolesov1, Engineer,  e-mail: kolesovev@gmail.com, ORCID ID: 0000-0002-0755-7405,
M.A. Semin1, Dr. Sci. (Eng.), Academic Secretary, Head of Laboratory, ORCID ID: 0000-0001-5200-7931,
Mining Institute of the Ural Branch of the Russian Academy of Sciences, 614007, Perm, Russia.



For contacts:

E.V. Kolesov, e-mail: kolesovev@gmail.com.


1. Levin L. Yu. Teoreticheskie i tekhnologicheskie osnovy resursosberegayushchikh sistem vozdukhopodgotovki rudnikov [Theoretical and technological foundations of resource-saving air treatment systems for mines], Doctor’s thesis, Perm, GI UrO RAN, 2010, 44 p.

2. Pestrikova V. S., Tarasov V. V., Zagvozdkin I. V. Life cycles of the mine shaft complex system in verkhnekamskoye deposit. News of the Tula state university. Sciences of Earth. 2021, no. 3, pp. 213—221. [In Russ]. DOI: 10.46689/2218-5194-2021-3-1-207-215.

3. Knyazev N. A., Kormshhikov D. S. Improving the safety of miners evacuation through upcast shafts during the airflow reversal in the cold season at a deep mine. Gornoe ekho. 2022, no. 3(88), pp. 74—80. [In Russ]. DOI: 10.7242/echo.2022.3.12 .

4. Denisenko E. A. Influence of drop in vertical mine shafts on the design of planned coordinates by gravity method. Scientific papers of Donetsk National Technical University. 2012, no. 38, pp. 60—69. [In Russ].

5. Kartoziya B. A., Korchak A. V., Levitskiy A. M., Lerner V. G., Malyshev Yu.N., Rakhmaninov Yu. P., Rezunenko V. I., Smirnov V. I., Fedunets B. I., Filimonov B. A., Shuplik M. N. Shakhtnoe i podzemnoe stroitel'stvo: uchebnik. T. 1 [Mine and underground construction: textbook, vol. 1], Moscow, Izd-vo Akademii gornykh nauk, 2001, 607 p.

6. Shalimov A. V., Kazakov B. P., Zaitsev A. V. Analytical approach to estimation of water build-up effect in mine ventilation shafts. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2021, vol. 332, no. 6, pp. 39—48. [In Russ]. DOI: 10.18799/24131830/2021/06/3234.

7. Lambrechts V. J. The value of water drainage in upcast mine shafts and fan drifts. Journal of the Southern African Institute of Mining and Metallurgy. 1956, March, pp. 307—324.

8. De Souza Е. The mystery of the ventilation raises. Proceedings of the 16th North American Mine Ventilation Symposium. Golden, USA: Colorado School of Mines. 2017, pp. 135—145.

9. Bludov A. E. Study of the influence of falling water in upcast shafts on the mine ventilation. Tekhnika bezopasnosti, okhrana truda i gornospasatel'noe delo. 1969, no. 5(23), pp. 22—26. [In Russ].

10. McPherson M. J. Subsurface ventilation and Environmental engineering. Chapman & Hall, 2009, 824 p.

11. Brake D. J. Mine ventilation: a practitioner’s manual. Brisbane, Australia, Mine Ventilation, 2012, 791 p.

12. Semin M., Zaitsev A. On a possible mechanism for the water build—up formation in mine ventilation shafts. Thermal Science and Engineering Progress. 2020, vol. 20, pp. 107—116. DOI: 10.1016/j.tsep.2020.100760.

13. Viljoen J., von Glehn F. H. Investigation of water build-up in vertical upcast shafts through CFD analysis. Proceedings of the 11th International Mine Ventilation Congress. Springer, Singapore. 2019, pp. 1003—1014. DOI: 10.1007/978-981-13-1420-9_86.

14. Kolesov E., Kazakov B., Shalimov A., Zaitsev A. Study of the water build-up effect formation in upcast shafts. Mathematics. 2023, vol. 11, no. 6, article 1288. DOI: 10.3390/math11061288.

15. Kolesov E. V., Semin M. A., Kazakov B. P., Knjazev N. A. Improvement of calculation method for heat transfer coefficient in air shaft based on experimental measurements in reversal ventilation mode. MIAB. Mining Inf. Anal. Bull. 2023, no. 3, pp. 57—71. [In Russ]. DOI: 10.25018/ 0236_1493_2023_3_0_57.

16. Kazakov B. P., Kolesov E. V., Nakariakov E. V., Isaevich A. G. Models and methods of aerogasdynamic calculations for ventilation networks in underground mines: Review. MIAB. Mining Inf. Anal. Bull. 2021, no. 6, pp. 5—33. [In Russ]. DOI: 10.25018/0236_1493_2021_6_0_5.

17. Nel A. J. H., Vosloo J. C., Mathews M. J. Evaluating complex mine ventilation operational changes through simulations. Journal of Energy in Southern Africa. 2018, vol. 29, no. 3, pp. 22—32.

18. Ren W., Reutzsch J., Weigand B. Direct numerical simulation of water droplets in turbulent flow. Fluids. 2020, vol. 5, p. 158. DOI: 10.3390/fluids5030158.

19. Malyshenko Yu. I., Roenko A. N. Taking into account of small droplets in rain drop size distribution function for terahertz waverange. Radіofіzika ta elektronіka. 2009, vol. 14, no. 3, pp. 323—330. [In Russ].

20. Ptaszynski B., Łuczak R., Zyczkowski P., Kuczera Z. Thermodynamic processes of the air flowing through a ventilation shaft in underground mines. Archives of Mining Sciences. 2018, vol. 63, no. 1, pp. 149—163. DOI: 10.24425/118892.

21. Thakur P. Advanced mine ventilation. Respirable coal dust, combustible gas and mine fire control. 1st ed., 2018, 528 p. DOI: 10.1016/C2014-0-04167-6.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.