Air quality control in coal mines based on gas monitoring statistics

The computational method is developed for failure-free operation of coal longwalls with various ventilation schemes (U-type, Z-type and Y-type) based on statistics on failures of mine ventilation elements within a sufficiently long period of time. The calculated gas pollution risks Rgas for longwalls in the same geotechnical conditions are 2.9 times higher in case of U-type ventilation and 1.9 times higher in Y-type ventilation as compared with Z-type ventilation. The Z-type ventilation scheme is 1.4 times more hazardous than the Y-type ventilation. Coal mines with high gas content should use the Y-type ventilation schemes, with detached dissolution of methane, as they feature 3 times less risk of gas pollution of air in longwalls as compared with the U-type ventilation. Gas pollution risk calculation for longwalls in different geological and geotechnical conditions requires a representative volume of statistical data on elements of ventilation systems (main fans, gas suction plants, local ventilation fans, air doors and air locks, crossings, main air feed and ventilation shafts, longwalls, haulage and ventilation drifts, gas suction pipelines, automation equipment, etc.) and geotechnology (longwall capacity, coal seam thickness, rock mass strength, mine support systems, mining depth, mining system, etc.). Data base on failures of ventilation system elements should use the data of gas monitoring of mine air. The research findings serve as a ground of Balovtsev’s integrated procedure for air quality assessment and control in planning, design, operation, closure and abandonment of coal mines.

Keywords: super hazardous coal mines by gas criterion, safe air quality, gas monitoring, gas pollution risk assessment, longwall ventilation system, mine ventilation reliability, failure rate.
For citation:

Skopintseva O. V., Balovtsev S. V. Air quality control in coal mines based on gas monitoring statistics. MIAB. Mining Inf. Anal. Bull. 2021;(3):78-89. [In Russ]. DOI: 10.25018/0236-1493-2021-1-0-78-89.

Issue number: 1
Year: 2021
Page number: 78-89
ISBN: 0236-1493
UDK: 622.831
DOI: 10.25018/0236-1493-2021-1-0-78-89
Article receipt date: 07.08.2020
Date of review receipt: 02.10.2020
Date of the editorial board′s decision on the article′s publishing: 10.12.2020
About authors:

O.V. Skopintseva1, Dr. Sci. (Eng.), Professor, e-mail:,
S.V. Balovtsev1, Cand. Sci. (Eng.), Assistant Professor, e-mail:,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.

For contacts:

S.V. Balovtsev, e-mail:


1. Korshunov G. I., Rudakov M. L., Kabanov E. I. The use of a risk-based approach in safety issues of coal mines. Journal of Environmental Management and Tourism. 2018. Vol. 9. No 1. Pp. 181—186. DOI: 10.14505//jemt.v9.1(25).23.

2. Filin A. E., Zinovieva O. M., Kolesnikova L. A., Merkulova A. M. Prospects of safety control in combination of mining and metallurgy industries. Eurasian Mining. 2018. No 1. Pp. 31— 34. DOI: 10.17580/em.2018.01.07.

3. Kabanov E. I., Korshunov G. I., Rodionov V.A. Expert system based on fuzzy logic for assessment of methane and dust explosion risk in coal mines. Gornyi Zhurnal. 2019, no 8, pp. 85— 88. [In Russ]. DOI: 10.17580/gzh.2019.08.17.

4. Kulikova E.Yu. Assessment of operating environment of concrete lining of sewage collector tunnels. IOP Conference Series: Materials Science and Engineering. 2019. Vol. 687. Article 044035. DOI: 10.1088/1757-899X/687/4/044035.

5. Kopylov K. N., Kubrin S. S., Reshetnyak S. N. The importance of improving energy efficiency and safety of coal mine extraction area. Ugol'. 2018, no 10 (1111), pp. 66—71. [In Russ]. DOI: 10.18796/0041-5790-2018-10-66-67.

6. Rudnichnaya ventilyatsiya: Spravochnik. Pod red. K. Z. Ushakova [Mine ventilation: Handbook. K. Z. Ushakov (Ed.) ], Moscow, Nedra, 1988, 440 p.

7. Landry M. J. The coset construction for non-equilibrium systems. High Energy Phisics — Theory. Submitted on 27 Dec 2019, p. 35.

8. Baggioli M., Landry M. J. Effective field theory for quasicrystals and phason dynamics [arXiv:2008.05339 [hep-th]].

9. Slastunov S. V., Kolikov K. S., Zakharova A. A., Mazanik E. V. Selection of an effective technology for the degasification of coal beds. Solid Fuel Chemistry. 2015. Vol. 49. No 6. Pp. 381—386.

10. Filin A. E., Ovchinnikova T. I., Zinov'eva O. M., Merkulova A. M. Advance of pulsating ventilation in mining. Gornyi Zhurnal. 2020, no 3, pp. 67—71. [In Russ]. DOI: 10.17580/ gzh.2020.03.13.

11. Kolikov K. S., Mazina I. E., Manevich A. I. Stress-strain analysis in coal and rock mass under traditional mining with full caving and in technology with backfilling. Eurasian Mining. 2018. No 2. Pp. 15—17. DOI: 10.17580/em.2018.02.04.

12. Batugin A. S. Reactivation of major faults during strong rock bursts as realization of tectonic process. Rock Mechanics for Natural Resources and Infrastructure Development. 2020. Vol. 6. Pp. 1261—1268.

13. Kulikova E. Yu., Vinogradova O. V. Risks as a cause of industrial safety inhibition in underground construction. MIAB. Mining Inf. Anal. Bull. 2020, no 7, pp. 146—154. [In Russ]. DOI: 10.25018/0236-1493-2020-7-0-146-154.

14. Batugin A., MusinaV. Golovko I. Analysis of geodynamical conditions of region of burning coal dumps location. IOP Conference Series: Earth and Environmental Science. 2017. Vol. 95. Article 042023. DOI: 10.1088/1755-1315/95/4/042023.

15. Wang Zhiqiang, Zhao Jingli, Zhang Baoyou, Liu P.-C. Stable characters of key stratum in stagger arrangement roadway layout top-coal caving mining. Journal of China Coal Society. 2008. Vol. 33. No 9. Pp. 961—965. [in Chinese].

16. Manevich A. I., Kolikov K. S., Egorova E. A. Geoecological aspects of stress-strain state modeling results of Leninsky coal deposit (Kuzbass, Russia). Russian Journal of Earth Sciences. 2019. Vol. 19. No 4. Pp. ES4002. DOI: 10.2205/2019ES000663.

17. Kulikova E.Yu. Estimation of factors of aggressive influence and corrosion wear of underground structures. Materials Science Forum. 2018. Vol. 931. Pp. 385—390. DOI: 10.4028/www. / MSF.931.385.

18. Korshunov G. I., Andreev R. E., Gridina E. B. Calculation of gas-dynamic parameters in powder chamber of a blast hole. International Journal of Civil Engineering and Technology. 2019. Vol. 10. No 2. Pp. 69—78.

19. Prikaz Rostekhnadzora ot 01.12.2011 № 678 (red. ot 25.09.2018) «Ob utverzhdenii Polozheniya ob aerogazovom kontrole v ugol'nykh shakhtakh» [Order of Rostekhnadzor dated 01.12.2011 No. 678 (revised from 25.09.2018) «On approval of the Regulation on air-gas control in coal mines»]. [In Russ].

20. Kopylov K. N., Kubrin S. S., Zakorshmennyy I. M., Reshetnyak S. N. Reserves of increase of efficiency of coal extraction sections of coal mines. Ugol'. 2019, no 3 (1116), pp. 46—49. [In Russ]. DOI: 10.18796/0041-5790-2019-3-46-49.

21. Kopylov K. N., Kubrin S. S., Reshetnyak S. N. Improvement of energy efficiency and safety in coal longwalls. Gornyi Zhurnal. 2019, no 4, pp. 85—89. [In Russ].

22. Pozdnyakov G. A., Goloskokov S. I., Goloskokov E. I., Zakutskiy E. L. Problems and prospects for the development of monitoring systems for the explosion safety of mine workings. Russian Mining Industry. 2016, no 4 (128), pp. 66. [In Russ].

23. Goffart T. V., Novikov A. V., Panevnikov K. V. Scanning (dynamic) gas control in the coal mines. Occupational Safety in Industry. 2017, no 6, pp. 59—62. [In Russ]. DOI: 10.24000/04092961-2017-6-59-62.

24. Ushakov V. K. Cost estimate of mine ventilation system design and operation towards enhanced labor safety. MIAB. Mining Inf. Anal. Bull. 2018, no 6, pp. 214—221. [In Russ]. DOI: 10.25018/0236-1493-2018-6-0-214-221.

25. Ushakov V. K. Dynamic hierarchical segmentation of mine ventilation systems in modeling methods of improvement of aerological safety. MIAB. Mining Inf. Anal. Bull. 2019, no 12, pp. 76—85. [In Russ]. DOI: 10.25018/0236-1493-2019-12-0-76-85.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.