Feed density control in rod drum mill at sylvinite ore milling stage

High energy input of milling decreases economic efficiency of ore pretreatment. It is of current concern to improve control over milling of sylvinite ore in production of potassium fertilizer at an annual output of millions of tons. The efficient control can reduce the energy input of the process and increases the quality of the end product at relatively low investment. The improved control of milling ore of potassium is achieved owing to the use of additional information from existing gauges and from the authorial dynamic model of the milling process. The wet milling technology is described. The conservative dynamic model is built using the customary representation of the process flow stages as independent links of a complex object of control – a salt rod drum mill at EuroChem Usolskiy, Perm Krai. At the stage of sylvinite ore milling down to flotation size, the control of the mill in its interaction with the high-performance sieves enables a considerable decrease in over-milling which leads to the loss of a useful component. It is proposed to support the invariant loop of control of the pulp density by information on the disturbance–mass flow of recycle stock. The simulation model is implemented in MATLAB Simulink to calculate efficiency of the proposed reconstruction of the automatic control system. The flow density control at the mill outlet is assessed using the existing measurement system with the proportional regulator and using the proposed combination system. The research shows that the inclusion of the disturbance into the process control and the disturbance action compensation enables essential improvement of the control quality as compared with the manual or proportional control. Accordingly, the proposed re-organization of the automated control system can be recommended for the introduction into industry. The proposed information approaches to the control improvement are usable both in other processes of ore pretreatment and in milling other ore minerals.

Keywords: ore of potassium, processing, milling, model, control, disturbance compensation, transient process, efficiency.
For citation:

Zatonskiy A. V., Bekker V. F., Saramaga Yu. O. Feed density control in rod drum mill at sylvinite ore milling stage. MIAB. Mining Inf. Anal. Bull. 2024;(8):125-140. [In Russ]. DOI: 10.25018/0236_1493_2024_8_0_125.

Acknowledgements:
Issue number: 8
Year: 2024
Page number: 125-140
ISBN: 0236-1493
UDK: 553.632+628.23+681.5
DOI: 10.25018/0236_1493_2024_8_0_125
Article receipt date: 14.03.2024
Date of review receipt: 15.04.2024
Date of the editorial board′s decision on the article′s publishing: 10.07.2024
About authors:

A.V. Zatonskiy1, Dr. Sci. (Eng.), Professor, Head of Chair, e-mail: zxenon@narod.ru,
V.F. Bekker1, Cand. Sci. (Eng.), Professor, Professor, e-mail: bekker@bf.pstu.ru,
Yu.O. Saramaga1, Student, e-mail: ysaramaga@mail.ru,
1 Perm National Research Polytechnic University, Berezniki Branch, Berezniki, Russia.

 

For contacts:

A.V. Zatonskiy, e-mail: zxenon@narod.ru.

Bibliography:

1. Gorlova O. E., Orehova N. N., Kolodezhnaja E. V., Kolkova M. S., Glagoleva I. V. Justification of the integrative criterion for predicting the possibility of selective disintegration of technogenic complex-structured raw materials. Vestnik of Nosov Magnitogorsk State Technical University. 2023, vol. 21, no. 3, pp. 15—26. [In Russ].

2. Zhukovskiy Y. L., Malkova Y. M. Classification of ways to improve the efficiency of the comminution and implementation of energy-efficient algorithms for controlling the twin-motor electric mill drive. Mining Equipment and Electromechanics. 2022, no. 4 (162), pp. 20—35. [In Russ]. DOI: 10.26730/ 1816-4528-2022-4-20-35.

3. Bogdanov V. S., Antsiferov S. I., Bogdanov D. V., Sychev E. A. State and directions of development of grinding technic and technology. Bulletin of BSTU named after V.G. Shukhov. 2022, no. 7, pp. 110—116. [In Russ]. DOI: 10.34031/2071-7318-2022-7-7-110-116.

4. Góralczyk M., Krot P., Zimroz R., Ogonowski S. Increasing energy efficiency and productivity of the comminution process in tumbling mills by indirect measurements of internal dynamics — an overview. Energies. 2020, vol. 13, no. 24, article 6735. DOI: 10.3390/en13246735.

5. Bouchard J., Desbiens A., Poulin É. Reducing the energy footprint of grinding circuits: the process control paradigm. IFAC-PapersOnLine. 2017, vol. 50, no. 1, pp. 1163—1168. DOI: 10.1016/j.ifacol.2017.08.402.

6. Wei D., Craig I. K. Grinding mill circuits — A survey of control and economic concerns. IFAC Proceedings. 2008, vol. 41, no. 2, pp. 1000—1005. DOI: 10.3182/20080706-5-kr-1001.00171.

7. Bazin C., Obiang P. Should the slurry density in a grinding mill be adjusted as a function of grinding media size? Minerals Engineering. 2007, vol. 20, no. 8, pp. 810—815. DOI: 10.1016/j.mineng.2007.01.017.

8. Albertos P., Garcia P., Gao Z., Liu T. Disturbance rejection in process control. Proceeding of the 11th World Congress on Intelligent Control and Automation. 2014, pp. 4134—4145. DOI: 10.1109/ WCICA.2014.7053408.

9. Varaksin A. Y. Two-phase flows with solid particles, droplets and bubbles: problems and research results (review). Teplofizika vysokikh temperatur. 2020, vol. 58, no. 4, pp. 646—669. [In Russ]. DOI: 10.31857/S004036442004016X.

10. Osipova N. V., Pevzner L. D. Features of the grinding complex control by directed control of strength properties of ore material. Nauchnyy vestnik Moskovskogo gosudarstvennogo gornogo universiteta. 2012, no. 10, pp. 69—74. [In Russ].

11. Hennart S. L. A., Wildeboer W. J., van Hee P., Meesters G. M. H. Identification of the grinding mechanisms and their origin in a stirred ball mill using population balances. Chemical Engineering Science. 2009, vol. 64, no. 19, pp. 4123—4130. DOI: 10.1016/j.ces.2009.06.031.

12. ZatonskyA. V. Modeling of the process section of the concentrator in Matlab package. Obogashchenie Rud. 2014, no. 4, pp. 49—54. [In Russ].

13. Erypalova M. N. Influence of non-stationarity of the control object on the parameters of the steady-state auto oscillations. University proceedings Volga region. Engineering sciences. 2008, no. 4, pp. 50—57. [In Russ].

14. Cleary P. W., Morrison R. D. Prediction of 3D slurry flow within the grinding chamber and discharge from a pilot scale SAG mill. Minerals Engineering. 2012, no. 39, pp. 184—195. DOI: 10.1016/j. mineng.2012.05.019.

15. Kuzyakov A. V., Zhidoveckiy V. D., Kul'chickiy A. A., Rusinov L. A. Functional structures of control systems for various technological complexes of non-ferrous metallurgy (implemen-tation examples). Tsvetnye Metally. 2023, no. 4, pp. 38—44. [In Russ].

16. Zatonsky A. V., Ufimtseva V. N. Development of object means of simulation and multi-agent modeling of production processes. Vestnik of Astrakhan State Technical University. Series: Management, computer science and informatics. 2018, no. 4, pp. 56—62. [In Russ]. DOI: 10.24143/20729502-2018-4-56-62.

17. Kafarov V. V., Dorokhov I. N., Arutyunov S. Yu. Sistemnyy analiz protsessov khimicheskoy tekhnologii: izmel'chenie i smeshenie [System analysis of chemical technology processes grinding and mixing], Moscow, Yurayt, 2021, 440 p.

18. Matsanga N., Nheta W., Chimwani N. A review of the grinding media in ball mills for mineral processing. Minerals. 2023, vol. 13, no. 11, article 1373. DOI: 10.3390/MIN13111373.

19. Bil'fel'd N. V. Identification of non-stationary control objects by passive experiment. Scientific and Technical Volga region Bulletin. 2013, no. 3, pp. 85—90. [In Russ].

20. Bekker V. F. Technological process control as a subsystem of product quality management. Problemy teorii i praktiki upravleniya. 2010, no. 10, pp. 78—84. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.