Advanced design of moveble cone armor in cone crusher for mining industry

This article describes a schematic diagram of a secondary cone crusher that is used in mining enterprises and ways to increase the efficiency of the grinding process by modernizing the armor of the crushing cone. The basis for the development of a mathematical model was the digital twin of a medium crushing cone crusher with an upgradeable crushing cone armor design, developed in the NX CAD/CAM/CAE system. This modernization of the design of the armor of the crushing cone is aimed at increasing the angle of capture of the machine and increasing productivity by reducing the amount of premature loss of large pieces from the working chamber of the crusher. When material enters the working area of the crusher, most often the flaky-shaped material falls into the discharge opening. Modernization of the armor of the crushing cone makes it possible to contain it due to a heel-shaped protrusion at the base of the cone, and an increase in the grip angle allows increasing the volume of the working chamber of the cone crusher. Basic mathematical calculations of the gripping angle made it possible to design a digital twin of the crusher, which was later used to carry out strength calculations using the finite element method in the CAD / CAM / CAE-system NX of the crushing cone assembly, which made it possible to select rational modes of operation of the cone crusher for crushing of rocks and minerals. Based on all calculations, a parameterized cone armor model was created, the parameters of which vary depending on the value of the specified capture angle.

Keywords: Crushing, mining, digital twin, cone crusher, NX CAD/CAM/CAE system, mathematical model, design model, idealization, simulation, parameterization.
For citation:

Anciferov S. I., Sychev E. A., Karachevceva A. V., Obernikhin A. A. Advanced design of moveble cone armor in cone crusher for mining industry. MIAB. Mining Inf. Anal. Bull. 2022;(12-2):17—33. [In Russ]. DOI: 10.25018/0236_1493_2022_122_0_17.

Acknowledgements:

The work was carried out within the framework of the implementation of the federal university support program «Priority 2030» using equipment based on the Center for High Technologies of V. G. Shukhov BSTU.

Issue number: 12
Year: 2022
Page number: 17-33
ISBN: 0236-1493
UDK: 621. 926. 88
DOI: 10.25018/0236_1493_2022_122_0_17
Article receipt date: 24.01.2022
Date of review receipt: 27.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.11.2022
About authors:

Anciferov S. I., Cand. Sci. (Eng.), Associate Professor of the Mechanical Equipment Department, http://orcid.org/0000-0002-4210-3185, Belgorod State Technological University named after V. G. Shukhov (BSTU named after V. G. Shukhov), 308012, Belgorod, Kostyukova street,46, Russia, e-mail: anciferov.sergey@gmail.com;
Sychev E. A., postgraduate student kafedry «Mekhanicheskoe oborudovanie», http:// orcid.org/0000-0002-9112-1945, Belgorod State Technological University named after V. G. Shukhov (BSTU named after V. G. Shukhov),308012, Belgorod, 308012, Belgorod, Kostyukova street,46, Russia, e-mail: evgeniy.sychov.015@gmail.com;
Karachevceva A. V., postgraduate student of the Mechanical Equipment Department, http:// orcid.org/0000-0002-8656-8443, Belgorod State Technological University named after V. G. Shukhov (BSTU named after V. G. Shukhov),308012, Belgorod, 308012, Belgorod, Kostyukova street,46, Russia, e-mail: karachevtseva.anastasiia@gmail.com;
Obernikhin A. A., master of the department of the Mechanical Equipment Department, http://orcid.org/0000-0002-1746-9177, Belgorod State Technological University named after V. G. Shukhov (BSTU named after V. G. Shukhov),308012, Belgorod, 308012, Belgorod, Kostyukova street,46, Russia, e-mail: obernihin.tolya@mail.ru.

 

For contacts:

Anciferov Sergej Igorevich, e-mail: anciferov.sergey@gmail.com.

Bibliography:

1. Yakovlev V. L., Kornilkov S. V., Sokolov I. V. Innovative basis of the strategy for the integrated development of mineral resources. Ekaterinburg: Ural Branch of the Russian Academy of Sciences. 2018, pp.360. [InRuss].

2. Pikalov V. A., Lapaev V. N., Saveliev O. Yu. Features of designing high-performance quarries. Science-intensive technologies for the development and use of mineral resources. 2016, no.3, pp. 392—395. [InRuss].

3. Chendyrev M. A., Zhuravlev A. G. Rationalization of geometric parameters receptions bunkers primary gyratory cone crusher for automotive transport. MIAB. Mining Inf. Anal. Bull. 2022;(5-1):158—170. [In Russ]. DOI: 10.25018/0236_1493_2022_51_0_158.

4. Jitka Laura Vlčková Analysis of the state of professional safety in the underground construction industry in the Czech republic and abroad. MIAB. Mining Inf. Anal. Bull. 2021;(4-1):91—97. [In Russ]. DOI: 10.25018/0236_1493_2021_41_0_91.

5. Bolobov V. I., Plashchinskii V. A. Influence of impact duration on the efficiency of destruction of rocks and plastic deformation of metals. MIAB. Mining Inf. Anal. Bull. 2022;(3):78-96. [In Russ]. DOI: 10.25018/0236_1493_2022_3_0_78.

6. Belov N.V., Borodina M.B., Smirnova O.A., Chasovskikh A.S. Failure analysis of main components of cone crushers. MIAB. Mining Inf. Anal. Bull. 2021;(3):17-27. [In Russ]. DOI: 10.25018/0236-1493-2021-3-0-17-27.

7. Derevnin I. A., Babokin G. I., Evaluation of the energy efficiency of a three-stage crushing process with cone crushers. Izvestiya TulGU. Technical science 2021, vol. 12, pp. 39—43. [InRuss]. DOI: 10.24412/2071_6168_2021_12_39_43.

8. Gorlov I. V., Mitusov P. E., Belyaev A. M. Analysis of the process of grinding weak rocks. Coal. 2022, № 6, pp. 44—47. [InRuss]. DOI: 10.18796/0041_5790_2022_6_44_47.

9. Bukharinov E. I., Choosing a crusher. Scientific and educational journal for students and teachers “StudNet”. 2020, no.11, pp. 1—6. [InRuss].

10. Zakoldaev D. A., Korobeynikov A. G., Shukalov A. V., Zharinov I. O. Digital forms of describing Industry 4.0 objects. IOP Conference Series Materials Science and Engineering. 2019, vol. 656 (1), pp. 1–6. DOI:10.1088/1757−899X/656/1/012057.

11. Zakoldaev D. A., Shukalov A. V., Zharinov I. O., Zharinov O. O. Designing technologies for the interaction of cyber-physical systems in smart factories of the Industry 4.0. Journal of Physics Conference Series. 2020, vol. 1515 (2), pp. 1–6. DOI:10.1088/1742−6596/1515/2/022008.

12. Zakoldaev D. A., Shukalov A. V., Zharinov I. O., Zharinov O. O. Realization of project procedures in the item designing companies of the Industry 3.0 and Industry 4.0. Journal of Physics: Conference Series. 2019, vol. 1333 (7), pp. 1–6. DOI:10.1088/1742−65 96/1333/7/072030.

13. Bochkov V. S., Dyagilev S. D. Analysis of one-stage and two-stage crushing of slate in the ShchD 10M jaw crusher for the manufacture of concrete mosaic tiles. MIAB. Mining Inf. Anal. Bull. 2020, no. 7, pp.78—84. [InRuss]. DOI: 10.25018/0236_1493_2020_7_0_7 8_84.

14. Bogdanov V. S., Vasilenko O. S., Bogdanov D. V., Fadin Yu. М Calculation of the performance of a cone inertial crusher. Vestnik BSTU im. V. G. Shukhov. 2017, no. 5, pp. 77–81. [InRuss] DOI: 10.12737/article_590878faf21b78.45764369.

15. Guryanov G. A., Abdeev B. M., Baigereev S. R., Kim V. A., Suleimenov A. D. Applied mechanical and mathematical model of grinding solid particles by static crushing. Bulletin of the Perm National Research Polytechnic university. Mechanics. 2021, no. 3, pp. 58—69. [InRuss] DOI: 10.15593/perm.mech/2021.3.06.

16. Gao Yinping, Chang Daofang, Chun-Hsien Chen, Xu Zhenyu Xu. Design of digital twin applications in automated storage yard scheduling. Advanced Engineering Informatics. 2022, no. 51, pp. 1−14. DOI: 10.1016/j.aei.2021.101477.

17. Xuesong Xu, Gang Xiao, Gonghui Lou, Jiawei Lu, Jun Yang, Zhenbo Cheng. Flexible parametric FEA modeling for product family based on script fragment grammar. Computers in Industry. 2019, no. 111, pp. 15−25. DOI: 10.1016/j.compind.2019.06.003.

18. Bogdanov V. S., Dmitrienko V. G., Shemetov E. G. Use in the educational process of the CAD / CAM / CAE system NX by students of BSTU. V. G. Shukhova. MIAB. Mining Inf. Anal. Bull. 2017, no. 7, pp. 29—33. [InRuss] DOI: 10.25018/0236_1493_2017_7_0_2 9_33.

19. Chiocca А., Frendo F., Aiello F., Bertini L. Influence of residual stresses on the fatigue life of welded joints. Numerical simulation and experimental tests. International Journal of Fatigue 162. 2022, pp. 1–16. DOI: 10.1016/j.ijfatigue.2022.106901.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.