Narrow beam atomic oven in vacuum device systems for reproducing ultra-stable frequency standard for surveying and geodetic positioning equipment

In this paper the features of the process, which includes the stages of miniaturization or, more precisely, compactization of the frequency reference device. This device is potentially applicable in the design process and for drawing design layouts, as well as in systems for tracking the position of mining and quarry equipment. The basic principles for obtaining operation substances in the required phase, which is necessary for the functioning of optical frequency systems in devices for reproducing ultra-stable clock frequencies based on alkaline earth metals, are presented. We describe a compacted source of atoms of alkaline earth metals, developed during an experiment on laser cooling of atoms in a source of ultrastable frequency. This source makes it possible to obtain a continuous flow of atoms, stable in intensity, for 10 years from one refill of 10 g of metal, which in turn reduces operating costs for maintenance and refilling. The source body is made of stainless steel to ensure vacuum cleanliness. There are no intra-vacuum heaters. The upper limit of the operating temperature for the sublimation of atoms is limited in absolute value to 600–650 °C, and in a high-quality implementation by the physical destruction of the heater materials. During the experiment, the narrow focus of this source was estimated at a level of less than 32 mrad. And sufficient to obtain a signal-to-noise flow of atoms no worse than 1013 [1/sec·cm2] at a temperature of 430 °C and an observation distance of 33 cm. Tubular heating elements from a household soldering station can be used as heating elements. The originality of the idea is supported by the implementation of an insulated air layer between the heated volume and the outer part of the device, preventing heating of the housing.

Keywords: terrain marking, topography, geopositioning, mountain landscape, frequency reference, atomic source, particle filter, satellite geodesy.
For citation:

Gurov M. G., Gurova E. G. Narrow beam atomic oven in vacuum device systems for reproducing ultra-stable frequency standard for surveying and geodetic positioning equipment. MIAB. Mining Inf. Anal. Bull. 2024;(12-1):245-257. [In Russ]. DOI: 10.25018/0236_ 1493_2024_121_0_245.

Acknowledgements:
Issue number: 12
Year: 2024
Page number: 245-257
ISBN: 0236-1493
UDK: 622.1:528.1, 622:[550.8:519.72]
DOI: 10.25018/0236_1493_2024_121_0_245
Article receipt date: 14.06.2024
Date of review receipt: 31.10.2024
Date of the editorial board′s decision on the article′s publishing: 10.11.2024
About authors:

M.G. Gurov, Cand. Sci. (Phys. Mathem.), Senior Researcher, Russian Metrological Institute of Technical Physics and Radio Engineering, Mendeleevo, 141570, Russia, e-mail: goorovmg@mail.ru, ORCID ID: 0000-0003-4958-1304,
E.G. Gurova, Cand. Sci. (Eng.), Assistant Professor, Novosibirsk State Technical University, 630073, Novosibirsk, Russia, e-mail: lena319@mail.ru, ORCID ID: 0000-0001-5254-4796.

 

For contacts:

M.G. Gurov, e-mail: goorovmg@mail.ru.

Bibliography:

1. Bondarescu R., Schärer A., Lundgren A., Hetényi G., Houlié N., Jetzer P., Bondarescu M. Ground-based optical atomic clocks as a tool to monitor vertical surface motion. Geophysical Journal International. 2015, vol. 202, pp. 1770—1774. DOI: 10.1093/gji/ggv246.

2. Thompson A., Moran J., Swenson G. Interferometry and synthesis in radio astronomy. Springer, Cham. 2017, 872 p. DOI: 10.1007/978-3-319-44431-4.

3. Xiaoxing H., Montillet J. P., Fernandes R., Bos M. S. Review of current GPS methodologies for producing accurate time series and their error sources. Journal of Geodynamics. 2017, vol. 106, pp. 12—29. DOI: 10.1016/j.jog.2017.01.004.

4. Fujieda M., Piester D., Gotoh T., Becker J., Aida M., Bauch A. Carrier-phase two-way satellite frequency transfer over a very long baseline. Metrologia. 2014, vol. 51, no. 3, pp. 253—262. DOI: 10.1088/0026-1394/51/3/253.

5. Kornilkov S. V., Rybnikova L. S., Rybnikov P. A., Smirnov A. Yu. Geoinformation monitoring for solving environmental problems of mining areas of the Middle Urals. Russian Mining Industry Journal. 2022, no. 1S, pp. 127—133. [In Russ]. DOI: 10.30686/1609-9192-2022-1S-127-133.

6. Tanaka Y., Katori H. Exploring potential applications of optical lattice clocks in a plate subduction zone. Journal of Geodesy. 2021, vol. 95, article 93. DOI: 10.1007/s00190-021-01548-y.

7. Takamoto M., Ushijima I., Ohmae N., Yahagi T., Kokado K., Shinkai H., Katori H. Test of general relativity by a pair of transportable optical lattice clocks. Nature Photonics. 2020, vol. 14, pp. 411—415. DOI: 10.1038/s41566-020-0619-8.

8. McGrew W. F., Zhang X., Fasano R. J., Schäffer S. A., Beloy K., Nicolodi D., Brown R. C., Hinkley N., Milani G., Schioppo M., Yoon T. H., Ludlow A. D. Atomic clock performance enabling geodesy below the centimetre level. Nature. 2018, vol. 564, pp. 87—90. DOI: 10.1038/s41586-018-0738-2.

9. Lodewyck J., Zawada M., Lorini L., Gurov M., Lemonde P. Observation and cancellation of a perturbing dc stark shift in strontium optical lattice clocks. IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control. 2012, vol. 59, no. 3, pp. 411—415. DOI: 10.1109/TUFFC.2012.2209.

10. Schioppo M., Poli N., Prevedelli M., Falke St., Lisdat Ch., Sterr U., Tino M. A compact and efficient strontium oven for laser-cooling experiments. Review of Scientific Instruments. 2012, vol. 83, article 103101. DOI: 10.1063/1.4756936.

11. Vishwakarma Ch., Mangaonkar J., Patel K., Verma G., Sarkar S., Rapol U. D. A simple atomic beam oven with a metal thermal break. Review of Scientific Instruments. 2019, vol. 90, article 053106. DOI: 10.1063/1.5067306.

12. Gurov M. G. Patent RU 2811394, 07.11.2023. [In Russ].

13. Popov A. Yu., Prokofiev V. A. Improving the accuracy of machining deep holes by electrical erosion machining with a rotating tubular electrode. Omsk Scietntific Bulletin. 2023, no. 1(185), pp. 5—9. [In Russ]. DOI: 10.25206/1813-8225-2023-185-5-9.

14. Altshuller G. S. Poisk idei: Vvedenie v TRIZ — Teoriya resheniya izobretatel'skikh zadach [Find an idea: Introduction to TRIZ — the theory of solving inventive problems], Moscow, Alpina Pablisher, 2008, 409 p.

15. Gurov M. G., Gurova E. G., Dmitriev A. K. The thermal fields impact on the shift of optical frequency standards. Izvestiya vuzov. Fizika. 2014. Т. 57. С. 83—88. [In Russ].

16. Safronova M. S., Porsev S. G., Safronova U. I., Kozlov M. G., Clark C. W. Blackbody-radiation shift in the Sr optical atomic clock. Physical Review A. 2013, vol. 87, article 012509. DOI: 10.1103/PhysRevA.87.012509.

17. Porsev S. G., Safronova M. S., Safronova U. I., Kozlov M. G. Multipolar polarizabilities and hyperpolarizabilities in the sr optical lattice clock. Physical Review Letters. 2018, vol. 120, article 063204. DOI: 10.1103/PhysRevLett.120.063204.

18. Middelmann Th., Falke St., Lisdat Ch., Sterr U. High accuracy correction of blackbody radiation shift in an optical lattice clock. Physical Review Letters. 2012, vol. 109, article 263004. DOI: 10.1103/PhysRevLett.109.263004.

19. Lisdat C., Grosche G., Quintin N., et al. A clock network for geodesy and fundamental science. Nature Communications. 2016, vol. 7, pp. 1—7. DOI: 10.1038/ncomms12443.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.