The influence of X-ray fluorescence separation algorithm on the effectiveness of pre-concentration of copper–zinc ore

The use of X-ray fluorescence separation for pre-concentration of ores that containing two or more valuable components will be effective when using separation algorithms that allow the separation of products, most often collective tailings, with a given quality for all valuable components. Using the example of a sample of two-component copper-zinc ore, the use of an R-algorithm is considered, taking into account, in the limiting case, the content of both valuable components with weighting coefficients, or the use in the hardware version of a complex analytical separation parameter representing the sum of X-ray spectral estimates for both copper and zinc, one of which is multiplied by a constant coefficient. It is revealed that the choice of an effective separation algorithm for the pre-concentration of complex raw materials by the X-ray fluorescence method depends on the lump density distribution of all valuable components in the ore. The study of the influence of weighting coefficients on separation indicators showed that the weighting coefficient significantly affects the yield of collective tails under given restrictions on the content of valuable components in them. It can be noted that for the studied sample, a change in the weight coefficient changes the potential yield of collective tails, which also significantly depends on the specified contents of valuable components in the tails. The described method of finding the separation algorithm can be applied when calculating potential technological indicators, as well as when choosing the settings of X-ray fluorescence separators in the case of pre-enrichment of complex, including multicomponent ores by X-ray fluorescence separation.

Keywords: preliminary ore dressing, X-ray fluorescence separation (XRF), X-ray transmission separation (XRT), fractional characteristics, analytical parameter, forecast of technological indicators, copper-zinc ore, separation efficiency.
For citation:

Tsypin E. F., Efremova T. A., Ovchinnikova T. Yu. The influence of X-ray fluorescence separation algorithm on the effectiveness of pre-concentration of copper–zinc ore. MIAB. Mining Inf. Anal. Bull. 2025;(1-1):208-220. [In Russ]. DOI: 10.25018/0236_1493_2025_11_ 0_208.

Acknowledgements:
Issue number: 1
Year: 2025
Page number: 208-220
ISBN: 0236-1493
UDK: 622.725:535.3
DOI: 10.25018/0236_1493_2025_11_0_208
Article receipt date: 16.07.2024
Date of review receipt: 28.10.2024
Date of the editorial board′s decision on the article′s publishing: 10.12.2024
About authors:

E.F. Tsypin1, Dr. Sci. (Eng.), Professor, e-mail: tsipin.e@mail.ru, ORCID ID: 0000-0003-3921-2695,
T.A. Efremova, Cand. Sci. (Eng.), Senior Researcher, JSC «Uralmekhanobr», 620144, Ekaterinburg, Russia, e-mail: efremova_ta@umbr.ru, ORCID ID: 0000-0002-9917-6676,
T.Yu. Ovchinnikova1, Cand. Sci. (Eng.), Assistant Professor, Assistant Professor, e-mail: tatyana.ovchinnikova@m.ursmu.ru, ORCID ID: 0000-0001-7000-9295,
1 Ural State Mining University, 620144, Ekaterinburg, Russia.

 

For contacts:

I.O. Familia, e-mail: tatyana.ovchinnikova@m.ursmu.ru.

Bibliography:

1. Tsypin E. F., Efremova T. A., Ovchinnikova T. Iu. Economic efficiency of preconcentration with X-ray fluorescence separation. Minerals and Mining Engineering. 2020, no. 6, pp. 66—74. [In Russ]. DOI: 10.21440/0536-1028-2020-6-66-74.

2. Chelgani S. C., Neisiani A. Asimi. Dry mineral processing. Springer Nature Switzerland AG, 2022, Corrected publication 2023.

3. Pelevin A. E. Iron ore beneficiation technologies in Russia and ways to improve their efficiency. Journal of Mining Institute. 2022, vol. 256, pp. 579—592. [In Russ]. DOI: 10.31897/PMI.2022.61.

4. Opalev A. S., Marchevskaya V. V. Development of innovative technologies of ore mineral resources concentration from the Russian Arctic zone. Russian Mining Industry Journal. 2023, no. 1, pp. 63—70. [In Russ]. DOI: ORG/10.30686/1609-9192-2023-1-63-70.

5. Bocharov V. A., Ignatkina V. A. Tekhnologiya obogashcheniya poleznykh iskopaemykh. T. 1. [Mineral processing technology. Vol. 1], Moscow, Ruda i metally, 2007, 952 p.

6. Valshchikov A. V., Litvinenko A. P., Dehler M. The Usinskoye manganese ore deposit project. Ore beneficiation process. Mineral resources of Russia. Economics & management. 2011, no. 3, pp. 80—83. [In Russ].

7. Tsypin E. F., Entaltsev E. V., Shemyakin V. S., Skopov S. V., Fedorov Y. O., Pestov V. V. Enrichment by X-ray radiometric separation. Steel in Translation. 2009, vol. 6, pp. 521—524.

8. Zverev V. V., Litvintsev E. G., Ryabkin V. K., Gusev S. S., Kuznetsiva O. V., Glushko T. V., Ratner V. B., Ryabkina Z. P. Radiometric separation as the main process in the technological scheme of mineral processing. Obogashchenie Rud. 2001, no. 5, pp. 3—6. [In Russ].

9. Li L., Li G., Li H., Li G., Zhangc D., Klein B. Bench-scale insight into the amenability of case barren copper ores towards XRF-based bulk sorting. Minerals Engineering. 2018, vol. 121, pp. 129—136. DOI: 10.1016/j.mineng.2018.02.023.

10. Fedorov Yu. O., Katser I. U., Korenev O. V., Korotkevich V. A., Tsoy V. P., Kovalev P. I., Fedorov M. Yu., Popovskiy N. S. Experience and practice of X-ray radiometric separation of ores. Minerals and Mining Engineering. 2005, no. 5, pp. 21—37. [In Russ].

11. Sanakulov K. S., Rudnev S. V., Kantsel' A. V. About the possibility of mining the Uchkulach deposit using the technology of X-ray radiometric processing of lead-zinc ores. Mining Bulletin of Uzbekistan. 2011, no. 1(44), pp. 17—20. [In Russ].

12. Kobzev A. S. Radiometricheskoe obogashchenie mineral'nogo syr'ya [Kobzev A. S. Radiometric beneficiation of mineral raw materials]. Moscow, Izd-vo «Gornaya kniga», 2023, 196 p.

13. Ermoshkin N. N., Ermoshkin D. N., Kurmanaliev K. Z., Mansurov V. A. Ore dressing for the balance, mined and merchantable ores at the Jamgyr gold deposit. Russian Mining Industry Journal. 2023, no. 1, pp. 101—108. [In Russ]. DOI: 10.30686/1609-9192-2023-1-101-108.

14. Zabolotsky A. I., Nerushchenko E. V., Results of research on the applicability of pre-enrichment methods for gold ores from Highland Gold mining ltd deposits. Mineral mining & conservation. 2020, no. 4, pp. 64—70. [In Russ]. DOI: 10.26121/RON.2020.57.68.008.

15. Veras M. M., Young A. S., Born C. R., Szewczuk A., Neto A. C. B., Petter C. O., Sampaio C. H. Affinity of dual energy X-ray transmission sensors on minerals bearing heavy rare earth elements. Minerals Engineering. 2020, vol. 147, article 106151.

16. Aksel'rod L. M., Turchin M. Y., Nazmiev M. I., Manuilova E. V., Galikhanov I. I. Satkin's magnesite concentration by means of X-ray transmission method. New Refractories. 2016, no. 6, pp. 8—12. [In Russ]. DOI: 10.17073/1683-4518-2016-6-8-12.

17. Lebedev A. N., Kobzev A. S., Kulichenko A. V. Comparison of efficiency of brusite ore concentration by radiometric separation methods. Prospect & protection of mineral resources. 2021, no. 1, pp. 53—56. [In Russ].

18. Robben C., Wotruba H. Sensor-based ore sorting technology in mining — Past, present and future. Minerals. 2019, vol. 9, article 523. DOI: 10.3390/min9090523.

19. Gazaleeva G. I. Metody uluchsheniya kachestva asbesta [Methods for improving the quality of asbestos], Ekaterinburg, Izd-vo UGGU, 2005, 153 p.

20. Collier D., Dwyer F. B., Thompson R. L., Wulff E. Ore sorters for asbestos and scheelite. International Mineral Processing Congress. London, 1973. London, 1974, pp. 1007—1022.

21. Zhang Y. R. Assessment of dual-energy X-ray transmission image analysis process on sulphide ore and coal cases. University of British Columbia, 2023, 106 p.

22. Wang S., He L., Guo Y., Hu K., Li D., Zhao Y., Ma X. Dual-energy X-ray transmission identification method of multi-thickness coal and gangue based on SVM distance transformation. Fuel. 2024, vol. 356, article 129593. DOI: 10.1016/j.fuel.2023.129593.

23. Pelevin A. E. Increasing the efficiency of iron ore raw materials beneficiation by separation in an increased magnetic field. Chernye metally. 2022, no. 1, pp. 31—36. DOI: 10.17580/chm.2022.01.04.

24. Petrov S. V., Borozdin A. P., Golovina T. A., Shelukhina Yu. S. Experience of application of ore preconcentration with the implementation of modern sensor techniques. Prospect & protection of mineral resources. 2021, no. 2, pp. 31—47. [In Russ].

25. Tatarnikov A. P., Asonova N. I., Balkina I. G., Naumov M. E., Konovalov G. N., Voevodin I. V. Modern technologies and equipment for radiometric concentration of uranium ores. Gornyi Zhurnal. 2007, no. 2, pp. 85—87. [In Russ].

26. Kolesaev V. B., Litvinenko V. G., Kultyshev V. I. Combined technology for processing of poor uranium ores. Gornyi Zhurnal. 2008, no. 8, pp. 50—53. [In Russ].

27. Shestakov V. V. Yaderno-geofizicheskiy ekspress-analiz transportiruemykh rud i resursosberegayushchie tekhnologii [Nuclear and geophysical express analysis of transported ores and resourcesaving technologies], Sverdlovsk, 1987, 111 p.

28. Peukert D., Xu C., Dowd P. A. Review of sensor-based sorting in mineral processing: The potential benefits of sensor fusion. Minerals. 2022, vol. 12, no. 11, article 1364. DOI: 10.3390/min12111364.

29. Tsypin E. F., Ovchinnikova T. Yu., Efremova T. A., Pestov V. V. Development of flow sheets for pre-concentration of multi-component complex ores. Obogashchenie Rud. 2016, no. 5, pp. 8—13. [In Russ]. DOI: 10.17580/or.2016.05.02.

30. Litvintsev E. G. Integration of radiometric methods in the separation of single and multicomponent ores. Obogashchenie Rud. 1984, no. 3, pp. 15—17. [In Russ].

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.