Effect of stability variation in chemically reinforced ground under multiple thermomechanical loads on thermally stimulated acoustic emission patterns

The article generalizes and analyzes experimental research findings on the effect of temperature conditions on acoustic emission patterns in initially loose (incoherent) collapsible soil subjected to cyclic repeatedly varied quasistatic mechanical loading in simultaneous reinforcement by injection of binding composite solutions. The guidelines to routinize the raw data processing and the approaches to theoretical interpretation of the found regular patterns are given. The application of the found laws is described as case-studies of soil stability variation in interaction of two opposite processes: consolidation and weakening of structural bonds in soil–grouting geomaterial. The chemically reinforced ground possesses thermally stimulated acoustic emission memory which, based on its features, can be assumed as an equivalent of the classical Felicity effect. The disclosed physical mechanism of the thermally stimulated acoustic emission memory explains its behavior. The article illustrates the potential advisability of using the thermally stimulated acoustic emission method in the quality control of injection operations in grounds susceptible to sliding, subsidence and other hazardous geological processes capable to induce instability in rock masses.

Keywords: soils, temperature conditions, load-bearing capacity, stress state, artificial reinforcement, acoustic emission, regular patterns, experience, geocontrol development, acoustic emission memory effect.
For citation:

Novikov E. A., Klementyev E. A. Effect of stability variation in chemically reinforced ground under multiple thermomechanical loads on thermally stimulated acoustic emission patterns. MIAB. Mining Inf. Anal. Bull. 2023;(3):83-106. [In Russ]. DOI: 10.25018/ 0236_1493_2023_3_0_83.

Acknowledgements:

The study was supported by the Russian Foundation for Basic Research, Project No. 21-77-00010.

Issue number: 3
Year: 2023
Page number: 83-106
ISBN: 0236-1493
UDK: (624.131.37+624.138+551.34):(534.2+534.6)
DOI: 10.25018/0236_1493_2023_3_0_83
Article receipt date: 11.12.2022
Date of review receipt: 23.01.2023
Date of the editorial board′s decision on the article′s publishing: 10.02.2023
About authors:

E.A. Novikov1, Cand. Sci. (Eng.), Assistant Professor, e-mail: e.novikov@misis.ru, Scopus ID: 55235147200, ORCID ID: 0000-0002-6997-1097,
E.A. Klementyev1, Student, e-mail: evgeniy-klementevof@mail.ru, Scopus ID: 57217249165, ORCID ID: 0000-0001-7242-0440,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

E.A. Novikov, e-mail: e.novikov@misis.ru.

Bibliography:

1. Ivanova T., Turchin V., Yudina L., Krutikov V., Sychugov S., Gmizov Y., Ziking K. Binding and hardening operations of loess collapsing soils under the school reconstruction in the city of Malgobek, the Republic of Ingushetia. Procedia Engineering. 2017, vol. 172, pp. 393—400. DOI: 10.1016/j.proeng.2017.02.006.

2. Amiri M., Sanjari M., Porhonar F. Microstructural evaluation of the cement stabilization of hematite-rich red soil. Case Studies in Construction Materials. 2022, vol. 16, article e00935. DOI: 10.1016/j.cscm.2022.e00935.

3. Vakili M. V., Chegenizadeh A., Nikraz H., Keramatikerman M. Investigation on shear strength of stabilised clay using cement, sodium silicate and slag. Applied Clay Science. 2016, vol. 124—125, pp. 243—251. DOI: 10.1016/j.clay.2016.02.019.

4. Yanru Zhao, Xiangsheng Chen, Tiande Wen, Pinghao Wang, Wanshuang Li Experimental investigations of hydraulic and mechanical properties of granite residual soil improved with cement addition. Construction and Building Materials. 2022, vol. 318, article 126016. DOI: 10.1016/j.conbuildmat.2021.126016.

5. Yu Xiao, Liyuan Tong, Hongbo Che, Qiwen Guo, Huangsong Pan Experimental studies on compressive and tensile strength of cement-stabilized soil reinforced with rice husks and polypropylene fibers. Construction and Building Materials. 2022, vol. 344, article 128242. DOI: 10.1016/j.conbuildmat.2022.128242.

6. Opukumo A. W. Sodium silicate stabilization of collapsible clayey calcareous soils. Newcastle University, School of Civil Engineering and Geosciences. 2019, 348 p.

7. Nazar R. S., Ahmed M. D., Al-Obaidi A. L. Assessment of bearing capacity and settlement characteristics of soft soils reinforced by crushed concrete and sodium silicate columns. Materials Today: Proceedings. 2022, vol. 61, part 3, pp. 781—785. DOI: 10.1016/j.matpr.2021.09.037.

8. Yitian Xu, Yan Zhang, Junjie Huang, Guoqing Chen Mechanical properties, microstructure and consolidation of sand modified with sodium silicate. Engineering Geology. 2022, vol. 310, article 106875. DOI: 10.1016/j.enggeo.2022.106875.

9. Moslemi A., Tabarsa A., Mousavi S. Y., Monfared M. H. A. Shear strength and microstructure characteristics of soil reinforced with lignocellulosic fibers-Sustainable materials for construction. Construction and Building Materials. 2022, vol. 356, article 129246. DOI: 10.1016/j. conbuildmat.2022.129246.

10. Chowdary B., Ramanamurty V., Pillai R. J. Fiber reinforced geopolymer treated soft clay — An innovative and sustainable alternative for soil stabilization. Materials Today: Proceedings. 2020, vol. 32, part 4, pp. 777—781. DOI: 10.1016/j.matpr.2020.03.574.

11. Shtefan Yu. V., Bondarev B. A., Yankovskii L. V. On strengthening temporary logging road clay soil by industrial waste and metallurgical slags. Stroitel'nye Materialy. 2020, no. 4-5, pp. 80—89. [In Russ]. DOI: 10.31659/0585-430X-2020-780-4-5-80-89.

12. Larionova N. A. Influence of the composition of shale ash on the effectiveness of strengthening clay soil. Engineering Geology World. 2021, vol. 16, no. 2, pp. 42—51. [In Russ]. DOI: 10.25296/1993-5056-2021-16-2-42-51.

13. Nyamdorj Setev, Dashjamts Dalayn, Odontuya Nyamdorj Determination of deformation modulus of soil cushions with geosynthetic reinforcements on soaked subsidence bases. Universitet Enbekteri — University Proceedings. 2022, no. 4(85), pp. 132—140. [In Russ]. DOI: 10.52209/1609_1825_2021_4_132.

14. Stepanischev K. Yu., Sidorov V. V. Investigation of the stress-strain state of individual elements of a soil cell reinforced with vertical reinforced concrete elements. Geotechnics. 2020, vol. 12, no. 4, pp. 24—40. [In Russ]. DOI: 10.25296/2221-5514-2020-12-4-24-40.

15. Kukina O. B., Volokitin V. P., Volkov V. V., Kim M. S., Chunikhina A. S. Methodology and experiments on the design of ground pads on the basis of weak soils. Structural mechanics and structures. 2022, no. 4 (35), pp. 82—91. [In Russ]. DOI: 10.36622/VSTU.2022.35.4.009.

16. Igosheva L. A., Grishina A. S. Review of the basic methods of the ground improvement. Bulletin of the Perm national research polytechnic university. Construction and architecture. 2016, vol. 7, no. 2, pp. 5—21. [In Russ]. DOI: 10.15593/2224-9826/2016.2.01.

17. Khafizov R. M. Analysis of methods for determining the deformation characteristics of cohesive soil. Soil Mechanics and Foundation Engineering. 2016, vol. 52, no. 6, pp. 361—365. DOI: 10.1007/s11204-016-9354-z.

18. Boldyrev G. G. Metody opredeleniya mekhanicheskikh svoystv gruntov. Sostoyanie voprosa: Monografiya [Methods for determining mechanical properties of soils. The state of the question: monograph], Penza, PGUAS, 2008, 696 p.

19. Supasit Pongsivasathit, Suksun Horpibulsuk, Suthee Piyaphipat Assessment of mechanical properties of cement stabilized soils. Case Studies in Construction Materials. 2019, vol. 11, article e00301. DOI: 10.1016/j.cscm.2019.e00301.

20. Kalach F. N. Performance evaluation of using injection reinforcement technology with self-expanding grout of soft soils at the sub-base of shallow foundations. Construction and Geotechnics. 2020, vol. 11, no. 2, pp. 62—77. [In Russ]. DOI: 10.15593/2224-9826/2020.2.06.

21. Carey A. S., Howard I. L. Backcasting and forecasting stabilized soil mechanical properties for mechanistic-empirical pavement design. Construction and Building Materials. 2022, vol. 324, article 126645. DOI: 10.1016/j.conbuildmat.2022.126645.

22. Kalinin A. L., Prolygin A. S., Aleksandrov A. S., Aleksandrova N. P. Сomparative analysis of methods for calculating stamp modules of soil deformation. The Russian Automobile and Highway Industry Journal. 2022, vol. 19, no. 1(83), pp. 114—130. [In Russ]. DOI: 10.26518/ 2071-7296-2022-19-1-114-130.

23. Prostov S. M., Gerasimov O. V., Nikulin N. Yu. Kompleksnyy geologo-geofizicheskiy monitoring protsessov uprochneniya gruntov: Monografiya [Integrated geological and geophysical monitoring of soil hardening processes: monograph], Tomsk, 2015, 188 p.

24. Di Maio R., De Paola C., Forte G., Piegari E., Pirone M., Santo A., Urciuoli G. An integrated geological, geotechnical and geophysical approach to identify predisposing factors for flowslide occurrence. Engineering Geology. 2020, vol. 267, article 105473. DOI: 10.1016/j. enggeo.2019.105473.

25. Lizheng Deng, Hongyong Yuan, Jianguo Chen, Zhanhui Sun, Ming Fu, Yuli Zhou, Shuan Yan, Zewei Zhang, Tao Chen Experimental investigation on progressive deformation of soil slope using acoustic emission monitoring. Engineering Geology. 2019, vol. 261, article 105295. DOI: 10.1016/j.enggeo.2019.105295.

26. Voznesensky A. S., Kutkin Y. O., Krasilov M. N. Interrelation of the acoustic Q-factor and strength in limestone. Journal of Mining Science. 2015, vol. 51, iss. 1, pp. 23—30. DOI: 10.1134/ S1062739115010044.

27. Kapustin V. V., Churkin A. A., Vladov M. L., Zasorin M. S., Shmurak D. V. Instrumental quality control of soil-cement columns and solids by seismoacoustic methods. Soil Mechanics and Foundation Engeneering. 2021, no. 6, pp. 19—26. [In Russ]. DOI: 10.1007/s11204-02209775-x.

28. Shkuratnik V. L., Novikov E. A. Thermally stimulated acoustic emission of rocks as a promising tool of geocontrol (review). Gornyi Zhurnal. 2017, no. 6, pp. 21—27. [In Russ]. DOI: 10.17580/gzh.2017.06.04.

29. Novikov E. A., Klementyev E. A. Strength properties analysis of soil after hardening and/ or cryogenic thermal reinforcement using the method of thermally stimulated acoustic emission. MIAB. Mining Inf. Anal. Bull. 2022, no. 4, pp. 134—155. [In Russ]. DOI: 10.25018/0236_149 3_2022_4_0_134.

30. Novikov E. A., Klementyev E. A. Thermally stimulated acoustic emission to assess soil stability change in physicochemical reinforcement. Gornyi Zhurnal. 2022, no. 9, pp. 39—46. [In Russ]. DOI: 10.17580/gzh.2022.09.07.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.