The effect of environmental acidity on copper (II) ions desorption from natural sorbents

The task of creating functional sorption materials based on natural raw materials capable of protecting human health and quality of life from heavy metal pollution through environmental protection is an urgent interdisciplinary problem. Copper (II) ions were studied as objects of research – the main pollutant of the territories adjacent to the flooded copper mines of the Ural region (Degtyarsky, Levikhinsky, etc.), and common sorbents of natural origin – neutralized peat in granular and non-granular form, as well as diatomite and vermiculite. The influence of the acidity of the medium on the effectiveness of immobilization of copper (II) ions by selected sorbents is considered. At the first stage of the research, heavy metal ions were bound from an aqueous solution with a concentration equal to 10 maximum permissible concentrations of copper (II) ions in the soil. Then, after filtration and drying, the sorbents were placed in an aqueous medium with an initial pH value of 2, 4, 7, 8. An acidic medium was created by adding nitric acid to distilled water, an alkaline medium by adding sodium hydroxide. The presence of desorption of copper (II) ions in the case of non-granular peat, as well as diatomite and vermiculite in a solution with a strongly acidic medium at pH = 2 has been established. At pH = 4, 7, 8, desorption has not been established within the error of the spectrophotometry method used to determine the concentration of copper (II) ions in mobile form. Based on the research results, a composite sorbent – meliorant based on natural components with the addition of calcium oxide is proposed to reduce the acidity of the medium and suppress the desorption of bound heavy metal ions.

Keywords: natural sorbents, peat, diatomite, vermiculite, heavy metals, binding, acidic environment, desorption.
For citation:

Apakashev R. A., Malyshev A. N., Lebzin M. S., Kurmacheva V. S., Gordeeva Yu. F. The effect of environmental acidity on copper (II) ions desorption from natural sorbents. MIAB. Mining Inf. Anal. Bull. 2024;(12-1):22-33. [In Russ]. DOI: 10.25018/0236_ 1493_2024_121_0_22.

Acknowledgements:

The research was funded as part of the implementation of the federal program for strategic academic leadership «Priority 2030» (Ural State Mining University).

Issue number: 12
Year: 2024
Page number: 22-33
ISBN: 0236-1493
UDK: 504.054
DOI: 10.25018/0236_1493_2024_121_0_22
Article receipt date: 16.07.2024
Date of review receipt: 02.11.2024
Date of the editorial board′s decision on the article′s publishing: 10.11.2024
About authors:

R.A. Apakashev1, Dr. Sci. (Chem.), Professor, e-mail: Apakashev.R@m.ursmu.ru, ORCID ID: 0000-0002-9006-3667,
A.N. Malyshev1, Research Engineer, e-mail: malyshev.k1b@ gmail.com, ORCID ID: 0000-0002-3104-1687,
M.S. Lebzin1, Junior Researcher, e-mail: az_ma@mail.ru, ORCID ID: 0000-0001-5959-135X,
V.S. Kurmacheva1, Laboratory Assistant-Researcher, e-mail: verakurmacheva55@mail.ru, ORCID ID: 0009-0005-5925-021X
Yu.F. Gordeeva1, Head of Laboratory, e-mail: julia100990@inbox.ru, ORCID ID: 0000-0002-7184-6586,
1 Ural State Mining University, 620144, Ekaterinburg, Russia.

 

For contacts:

A.N. Malyshev, e-mail: malyshev.k1b@gmail.com.

Bibliography:

1. Lukin S. V., Selyukova S. V. Agroecological assessment of the effect of organic fertilizers on the microelement composition of soils. Achievements of science and technology in agribusiness. 2016, no. 30 (12), pp. 61—65. [In Russ].

2. Vodyanitskiy Yu. N. Tyazhelye i sverkhtyazhelye metally i metalloidy v zagryaznennykh pochvakh [Heavy and superheavy metals and metalloids in polluted soils], Moscow, 2009, 96 p.

3. Dudina S. N. The modification of sorbents based on natural clay materials. Belgorod state university scientific bulletin. Natural sciences. 2013, no. 24 (167), pp. 131—134. [In Russ].

4. Sokolovskiy P. V. Razrabotka sostava i opredelenie kolloidno-khimicheskikh kharakteristik kompozitsionnogo sorbenta na osnove produktov piroliza otkhodov shelusheniya tekhnicheskikh i zernovykh sel'skokhozyaystvennykh kul'tur i montmorillonit soderzhashchikh glin [Development of the composition and determination of colloidal and chemical characteristics of a composite sorbent based on pyrolysis products of peeling waste from industrial and grain crops and montmorillonite containing clays], Candidate’s thesis, Belgorod, NIU BelGU, 2016, 21 p.

5. Antoninova N. Yu., Shubina L. A., Shepel K. V., Sobenin A. V., Usmanov A. I. Assessment of the possibility of using industrial waste in the development of measures for the immobilization of heavy metals. MIAB. Mining Inf. Anal. Bull. 2022, no. 5-1, pp. 46—55. [In Russ]. DOI: 10.25018/0236_14 93_2022_51_0_46.

6. Turner T., Wheeler R., Stone A., Oliver I. Potential alternative reuse pathways for water treatment residuals: Remaining barriers and questions — a review. Water, Air, & Soil Pollution. 2019, vol. 230, no. 9, pp. 1—30. DOI: 10.1007/s11270-019-4272-0.

7. Bilal M., Ihsanullah I., Younas M., Ul Hassan Shah M. Recent advances in applications of lowcost adsorbents for the removal of heavy metals from water: A critical review. Separation and Purification Technology. 2021, vol. 278, article 119510. DOI: 10.1016/j.seppur.2021.119510.

8. Levy-Ontman O., Yanay C., Alfi Y., Paz-Tal O., Wolfson A. Selective sorption of heavy metals by renewable polysaccharides. Polymers. 2023, vol. 15, article 4457. DOI: 10.3390/polym15224457.

9. Richards S., Dawson J., Stutter M. The potential use of natural vs commercial biosorbent material to remediate stream waters by removing heavy metal contaminants. Journal of Environmental Management. 2019, vol. 231, pp. 275—281. DOI: 10.1016/j.jenvman.2018.10.019.

10. De Gisi S., Lofrano G., Grassi M., Notarnicola M. Characteristics and adsorption capacities of low-cost sorbents for wastewater treatment. A review. Sustainable Materials and Technologies. 2016, vol. 9, pp. 10—40. DOI: 10.1016/j.susmat.2016.06.002.

11. Koptsik G. N. Modern approaches to remediation of soils contaminated with heavy metals (literature review). Eurasian Soil Science. 2014, no. 7, pp. 851—868. [In Russ].

12. Slukovskaya M. V., Ivanova L. A., Gorbacheva T. T., Drogobuzhskaya S. V., Inozemtseva E. S., Markovskaya E. F. Changes in the properties of technogenically polluted soil when using carbonatite meliorant in the impact zone of a copper-nickel combine. Transactions of the Karelian research centre of the Russian academy of sciences. 2013, no. 6, pp. 133—141. [In Russ].

13. Elboughdiri N. The use of natural zeolite to remove heavy metals Cu (II), Pb (II) and Cd (II), from industrial wastewater. Journal Cogent Engineering. 2020, vol. 7, no. 1. DOI: 10.1080/23311916. 2020.1782623.

14. Weng C.-H., Sharma Y. C., Chu S.-H. Adsorption of Cr(VI) from aqueous solutions by spent activated clay. Journal of Hazardous Materials. 2008, vol. 155, no. 1-2, pp. 65—75. DOI: 10.1016/j. jhazmat.2007.11.029.

15. Rybnikova L. S., Rybnikov P. A., Navolokina V.Yu. Assessment of the impact of the flooded Levikhinsky copper-chipped mine on the quality of surface waters of the Tagil river. Problems of Subsoil Use. 2019, no. 3(22), pp. 155—161. [In Russ].

16. Elokhina S. N. Tekhnogenez zatoplennykh rudnikov Urala [Technogenesis of flooded mines in the Urals], Doctor’s thesis, Ekaterinburg, UGGU, 2014, 43 p.

17. Belozertseva I. A., Granina N. I. The impact of exploration, extraction and processing of minerals on the soils of Siberia. The Fundamental researches. 2015, no. 10-2, pp. 238—242. [In Russ].

18. Rybnikova L. S., Navolokina V. Yu. Justification of measures to minimize the impact of acidic mine waters on the hydrosphere. A case-study of Levikha Copper–Sulphide Mine, Sverdlovsk Region. MIAB. Mining Inf. Anal. Bull. 2021, no. 5-2, pp. 245—256. [In Russ]. DOI: 10.25018/0236_1493_2 021_52_0_245.

19. Yanin E. P. Environmental consequences of the development of deposits of non-ferrous and rare metals. Analytical review. Ekologicheskaya ekspertiza. 2020, no. 1, pp. 2—82. [In Russ]. DOI: 10.36535/0869-1010-2020-01-1.

20. Kislitsyna А. P., Figurin V. A. The effect of lime and mineral fertilizers on agrochemical characteristics of soil and productivity of birdsfoot trefoil and timothy grass mixture. Agricultural science of Euro-North-East. 2021, no. 3, pp. 367—375. [In Russ]. DOI: 10.30766/2072-9081.2021.22.3.367-375.

21. Abuova G. B., Davydova E. V. General characteristics of sorbents used to improve the operation of wastewater treatment plants. Perspektivy razvitiya stroitel'nogo kompleksa. 2015, no. 1, pp. 362—366. [In Russ].

22. Lodygin E. D., Alekseev I. I., Vasilevich R. S., Abakumov E. V. Complexation of lead and cadmium ions with humic acids from arctic peat soils. Environmental Research. 2020, vol. 191, article 110058. DOI: 10.1016/j.envres.2020.110058.

23. Kuznetsova I. A., Larionov N. S. The chemical composition and sorption properties of peat are the basis of the resource potential of typical upland bogs of the north-west of Russia. Advances in current natural sciences. 2018, no. 7, pp. 165—170. [In Russ]. DOI: 10.17513/use.36820.

24. Gavrilov S. V., Kanarskaya Z. A. Adsorption properties of peat and products based on it. Herald of technological university. 2015, no. 2, pp. 422—427. [In Russ].

25. Antoninova N. Yu., Usmanov A. I., Sobenin A. V., Gorbunov A. A. Effect of peat–diatomite ameliorant on grass cover persistency in disturbed land reclamation. MIAB. Mining Inf. Anal. Bull. 2022, no. 5, pp. 131—141. [In Russ]. DOI: 10.25018/0236_1493_2022_5_0_131.

26. Kasiuliene A., Carabante I., Bhattacharya P., Caporale A. G., Adamo P., Kumpiene J. Removal of metal(oid)s from contaminated water using iron-coated peat sorbent. Chemosphere. 2018, vol. 198, pp. 290—296. DOI: 10.1016/j.chemosphere.2018.01.139.

27. Nguyen Viet Cong, Korotkova P. S., Khanmamedova E. N., Grigoryeva L. S. Modified sorbents based on diatomites. Vestnik MGSU. 2019, vol. 14 (7), pp. 862—869. [In Russ]. DOI: 10.22227/19970935.2019.7.862-869.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.