The influence of composite material in the stemming design on its operability

The paper presents analytical and experimental results of studies to increase the time of locking of the explosion products in the explosive cavity (well). When making stemming with the use of composite materials, one should consider the surface area of the filler particles in the stemming material, as too large or too small area may lead to excessive brittleness, or too high plasticity of the interlocking device. The calculations carried out according to the proposed method show that preserving the plastic properties of the interlocking device is only possible if a filler with certain particle sizes is used. The considered material of all possible applications turned out to be the most suitable filler, both from the economic and technological points of view. In this paper, the presented algorithm for calculating the optimal particle size of the filler material can be interpreted as a complete calculation method.

Keywords: explosion, interlocking device, plastic material for stemming, filler, retention time of the explosion products, yield strength of stemming material, high pressure polyethylene, and stemming.
For citation:

Moldovan D. V., Chernobay V. I., Yastrebova K. N. The influence of composite material in the stemming design on its operability. MIAB. Mining Inf. Anal. Bull. 2023;(9-1):110–121. [In Russ]. DOI: 10.25018/0236_1493_2023_91_0_110.

Issue number: 9
Year: 2023
Page number: 110-121
ISBN: 0236-1493
UDK: 622.235.523
DOI: 10.25018/0236_1493_2023_91_0_110
Article receipt date: 02.05.2023
Date of review receipt: 08.06.2023
Date of the editorial board′s decision on the article′s publishing: 10.08.2023
About authors:

D.V. Moldovan1, Cand. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0000-0003-2227-6625,
V.I. Chernobay1, Cand. Sci. (Eng.), Assistant Professor, e-mail:, ORCID ID: 0000-0002-6858-8854,
K.N. Yastrebova1, Cand. Sci. (Eng.), Researcher, Scientific Center for Geomechanics and Mining Problems, e-mail:,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.


For contacts:

D.V. Moldovan, e-mail:


1. Moldovan D. V., Chernobay V. I., Sokolov S. T., Bazhenova A. V. Design concepts for explosion products locking in chamber. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 5—17. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_5.

2. Koteleva N., Loseva E. Development of an algorithm for determining defects in cast-inplace piles based on the data analysis of low strain integrity testing. Applied Sciences. 2022, vol. 12, no. 20, article 10636. DOI: 10.3390/app122010636.

3. Jia B., Ling T., Hou S., Liu D. Application of variational mode decomposition based delay time identification in short millisecond blasting. Transaction of Beijing Institute of Technology. 2021, vol. 41, no. 4, pp. 341—348. DOI: 10.15918/j.tbit1001-0645.2019.308.

4. Rakhmanov R. A., Loeb J., Kosukhin N. I. Estimation of ore contour movement s after the blast using the BMM system. Journal of Mining Institute. 2020, vol. 245, pp. 547—553. [In Russ]. DOI: 10.31897/PMI.2020.5.6.

5. Yi C., Sjöberg J., Johansson D. Numerical modeling forblast-inducedfragmentationin sublevel caving mines. Tunneling and Underground SpaceTechnology. 2017, vol. 68, pp. 167—173. DOI: 10.1016/j.tust.2017.05.030.

6. Sasaoka T., Takahashi Y., Sugeng W., Hamanaka A. Effects of rock mass conditions and blasting standard on fragmentation size at limestone quarries. Open Journal of Geology. 2015, vol. 5, no. 5, pp. 331—339. DOI: 10.4236/ojg.2015.55030.

7. Makhovikov A. B., Kryltsov S. B., Matrokhina K. V., Trofimets V. Ya. Secured communication system for a metallurgical company. Tsvetnye Metally. 2023, no. 4, pp. 5—13. [In Russ]. DOI: 10.17580/tsm.2023.04.01.

8. Ivanov V. V., Dzyurich D. O. Justification of the technological scheme parameters for the development of flooded deposits of construction sand. Journal of Mining Institute. 2022, vol. 253, pp. 33—40. [In Russ]. DOI: 10.31897/PMI.2022.3.

9. Menjulin M. G., Kazmina A. J., Afanasew P. I. Die einwirkung der sprengarbeiten auf den erhaltungszustand des massivs ausserhalb der sprengzone mit und ohne vorspaltenbilding. Scientific Reports on Resource Issues. Freiberg: International University of Resources. 2011, vol. 1, pp. 184—187.

10. Sanchidrián J. A., Ouchterlony F., Segarra P., Moser P. Size distribution functions for rock fragments. International Journal of Rock Mechanics and Mining Sciences. 2014, vol. 71, no. 3-4, pp. 381—394. DOI: 10.1016/j.ijrmms.2014.08.007.

11. Efremov E. I., Nikiforova V. A. Influence of borehole diameter on the area of contact between explosive and destructible rock and on the yield of fine fractions. Suchasni resursoenergozberigayuchi tekhnologii girnichogo virobnitstva. 2012, no. 2 (10), pp. 9—15.

12. Overchenko M. N., Tolstunov S. A., Mozer S. P. Influence of mining-geological conditions and technogenic factors on blastholes stability during open mining of apatitenepheline ores. Journal of Mining Institute. 2018, vol. 231, pp. 239—244. [In Russ]. DOI: 10.25515/PMI. 2018.3.2399.

13. Silva J., Li L., Gernand J. M. Reliability analysis for mine blast performance based on delay type and firing time. International Journal of Mining Science and Technology. 2018, vol. 28, no. 2, pp. 195—204. DOI: 10.1016/j.ijmst.2017.07.004.

14. Karakus M., Ebong U., Liu C., Zhou H. Three-dimensional finite element analysis for rock fatigue damage under dynamic loading. ISRM Regional Symposium, EUROCK-2015. 2015, pp. 577—582.

15. Kurchin G. S., Lobatsevich M. A., Petushkova T. A., Efremov P.Yu.Efficiency of stemming in wells. Nauki o Zemle: vchera, segodnya, zavtra. Materialy IV Mezhdunarodnoy nauchnoy konferentsii [Earth Sciences: yesterday, today, tomorrow. Materials of the IV International Scientific Conference], Kazan, 2018, pp. 17—19. [In Russ].

16. Blair D. P. Limitations of electronic delays for the control of blast vibration and fragmentation. Rock Fragmentation by Blasting. Proceedings of the 9th International Symposium on Rock Fragmentation by Blasting, FRAGBLAST. 2010, vol. 9, pp. 171—184.

17. Wu H., Gong M. Calculation and application of hole by hole blasting vibration superposition based on measured delay times of detonators. Explosion and Shock Waves. 2019, vol. 39, no. 2, article 025202. DOI: 10.11883/bzycj-2017-0415.

18. Roy M. P., Mishra A. K., Agrawal H., Singh P. K. Blast vibration dependence on total explosives weight in open-pit blasting. Arabian Journal of Geosciences. 2020, vol. 13, no. 13, article 531. DOI: 10.1007/s12517-020-05560-y.

19. Mysin A. V., Kovalevsky V. N., Dolzhikov V. V. Experimental studies on the performance parameters of elongated shaped charges of different configurations. MIAB. Mining Inf. Anal. Bull. 2022, no. 10, pp. 125—140. DOI: 10.25018/0236_1493_2022_10_0_125.

20. Wang Z., Fang C., Chen Y., Cheng W. A comparative study of delay time identification by vibration energy analysis in millisecond blasting. International Journal of Rock Mechanics and Mining Sciences. 2013, vol. 60, no. 4, pp. 389—400. DOI: 10.1016/j.ijrmms.2012.12.032.

21. Wang Y., Wang H., Cui C., Zhao B. Investigating different grounds effects on shock wave propagation resulting from near-ground explosion. Applied Sciences. 2019, vol. 9, no. 17, article 3639. DOI: 10.3390/app9173639.

22. Bukhartsev V. N., Pham N. T. The effect of the structural model on estimating the bearing capacity of the ground base. Power Technology and Engineering. 2018, vol. 52, no. 4, pp. 389—394. DOI: 10.1007/s10749-018-0963-8.

23. Dipaloke M., Viladkar M. N., Mahendra S. Corrigendum to а multiple-graph technique for preliminary assessment of ground conditions for tunneling. International Journal of Rock Mechanics and Mining Sciences. 2018, vol. 9, no. 17, pp. 278—286. DOI: 10.1016/ j.ijrmms. 2017.10.010.

24. Khandelwal M., Singh T. H. Evaluation of blast-induces vibration predictors. Soil Dynamics and Earthquake Engineering. 2007, vol. 27, no. 2, pp. 116—125. DOI: 10.1016/j. soildyn.2006.06.004.

25. Öncü M. E., Yön B., Akkoyun Ö., Taşkiran T. Investigation of blast-induced ground vibration effects on rural buildings. Structural Engineering and Mechanics. 2015, vol. 54, no. 3,

pp. 545—560. DOI: 10.12989/sem.2015.54.3.545.

26. Dolzhikov V. V., Ryadinsky D. E., Yakovlev A. A. Influence of deceleration intervals on the amplitudes of stress waves during the explosion of a system of borehole charges. MIAB. Mining Inf. Anal. Bull. 2022, no. 6-2, pp. 18—32. [In Russ]. DOI: 10.25018/0236_1493_2022_62_0_18.

27. Shi X. Z., Chen S. H. R. Delay time optimization in blasting operations for mitigating the vibration-effects on final pit walls' stability. Soil Dynamics and Earthquake Engineering. 2011, vol. 31, no. 8, pp. 1154—1158. DOI: 10.1016/j.soildyn.2011.04.004.

28. Yastrebova K. N., Vladimirovich M. D., Ivanovich C. V. Influence of the nature of the outflow of explosion products from blast holes and boreholes on the efficiency of rock destruction. E3S Web of Conferences. 2020, vol. 174, article 01017. DOI: 10.1051/ e3sconf/202017401017.

29. Zhang S., Ling T.-H., Liu H.-R., Cao F. Pattern adapted wavelet time-energy density method and its application in millisecond blast vibration signal analysis. Journal of the China Coal Society. 2014, vol. 39, no. 10, pp. 2007—2013. DOI: 10.13225/j.cnki.jccs.2014.0325.

30. Zhang Y., Chen Y., Chen S., Liu H., Fu Z. Experimental study on deformation of a sandy field liquefied by blasting. Soil Dynamics and Earthquake Engineering. 2019, vol. 116, pp. 60—68. DOI: 10.1016/j.soildyn.2018.09.042.

31. Khokhlov S. V., Sokolov S. T., Vinogradov Y. I., & Frenkel I. B. Conducting industrial explosions near gas pipelines. Journal of Mining Institute. 2021, vol. 247, pp. 48—56. [In Russ]. DOI: 10.31897/PMI.2021.1.6.

32. Khokhlov V., Lukin V., Khokhlov S. Modelling full-colour images of Earth: simulation of radiation brightness field of Earth’s atmosphere and underlying surface. Annals of GIS. 2023, vol. 29, no. 1, pp. 143—161. DOI: 10.1080/19475683.2022.2064911.

33. Zhang S., Wu S., Zhang G. Three-dimensional strength characteristics of zigong sandstone under true triaxial stresses. 10th Asian Rock Mechanics Symposium (ARMS10). 2018 ISRM International Symposium. 2018.

34. Kamyanskiy V. N. Povyshenie effektivnosti skvazhinnoy otboyki na kar'erakh pri raznovremennom vzryvanii skvazhinnykh zaryadov [ncreasing the efficiency of borehole breaking in open pits with multi-temporal blasting of borehole charges], Candidate’s thesis, Moscow, GoI KNTS RAN, 2019, 24 p.

35. Cardu M., Giraudi A., Oreste P. A review of the benefits of electronic detonators. Revista Escola de Minas. 2013, vol. 66, no. 3, pp. 375—382. DOI: 10.1590/S0370-44672013000300016.

36. Lange I., Kotiukov P., Lebedeva Y. Analyzing physical-mechanical and hydrophysical properties of sandy soils exposed to long-term hydrocarbon contamination. Sustainability. 2023, vol. 15, no. 4, article 3599. DOI: 10.3390/su15043599.

37. Koteleva N., Frenkel I. Digital processing of seismic data from open-pit mining blasts. Applied Sciences. 2021, vol. 11, no. 1, 383. DOI: 10.3390/app11010383.

38. Smirnyakov V. V., Rodionov V. A., Smirnyakova V. V., Orlov F. A. The influence of the shape and size of dust fractions on their distribution and accumulation in mine workings when changing the structure of air flow. Journal of Mining Institute. 2022, vol. 253, pp. 71—81. [In Russ]. DOI: 10.31897/PMI.2022.12.

39. Korshunov G. I., Karimov A. M., Magamedov G. S., Tyulkin S. A. Reduction of respirable dust-induced impact on open pit mine personnel in large-scale blasting. MIAB. Mining Inf. Anal. Bull. 2023, no. 7, pp. 132—144. [In Russ]. DOI: 10.25018/0236_1493_2023_7_0_132.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.