Particle size impact on dry magnetic separation efficiency

Spotlight of this study is on the influence exerted by sizes of finely milled titanium– magnetite ore on dry magnetic separation performance toward reduction in magnetite iron loss in tailings. The tear-off angle of particles from separator drum can differ for particles of different size, subject to their magnetic susceptibility and field density of the separator model in use. For this reason, magnetic product can contain fines and particles with low iron content and low magnetic susceptibility. Alternatively, nonmagnetic product can contain large particles and aggregates with high iron content and high magnetic susceptibility. An increase in the field density of drum separators (from 0.16 to 0.24 T) allows using dry magnetic separation without preliminary screening of finely milled ore. In this case, mass fraction of total and magnetite iron reduces in nonmagnetic product. Coarse and fine particles in dry magnetic separation tailings at the field density of 0.25 T has an increased mass fraction of magnetite iron as compared with the intermediate sizes. Theoretically, the most effective technology of titanium–magnetite ore pretreatment is separate dry magnetic separation in different magnetic fields for large fractions (high field density) and fine fraction (low field density).

Keywords: Dry magnetic separation, size, magnetic force, particle tear-off angle, field density, titanium-magnetite, drum separator.
For citation:

Pelevin A. E., Sytykh N. A., Cherepanov D. V. Particle size impact on dry magnetic separation efficiency. MIAB. Mining Inf. Anal. Bull. 2021;(11-1):293—305. [In Russ]. DOI: 10.2501 8/0236_1493_2021_111_0_293.

Acknowledgements:
Issue number: 11
Year: 2021
Page number: 293-305
ISBN: 0236-1493
UDK: 622.778 : 622:341
DOI: 10.25018/0236_1493_2021_111_0_293
Article receipt date: 01.06.2021
Date of review receipt: 21.06.2021
Date of the editorial board′s decision on the article′s publishing: 10.10.2021
About authors:

Pelevin A. E.1, Dr. Sci. (Eng.), Associate Professor, Professor at the Mineral Processing Department, e-mail: a-pelevin@yandex.ru;
Sytykh N. A.2, Head of Quality Control Department;
Cherepanov D. V.2, Chief Specialist for Technological Development at Processing Plant;
1 Ural State Mining University, Yekaterinburg, Russia;
2 EVRAZ Kachkanar Mining and Processing Plant, Kachkanar, Russia.

 

For contacts:
Bibliography:

1. Derkach V. G. Special’nye metody obogashcheniya poleznyh iskopaemyh [Special methods for mineral processing], Мoscow, Nedra, 1966, 338 p. [In Russ].

2. Karmazin V. V., Karmazin V. I. Magnitnye, elektricheskie i special’nye metody obogashcheniya poleznyh iskopaemyh. T. 1. Magnitnye i elektricheskie metody obogashcheniya poleznyh iskopaemyh [Magnetic, electrical and special methods for mineral processing. Vol. 1. Magnetic and electrical methods for mineral processing], Мoscow, Gornaya Kniga, 2012, 672 p. [In Russ].

3. Mehdi Parian, Pertti Lamberg, Jan Rosenkranz. Developing a particle-based process model for unit operations of mineral processing WLIMS. International Journal of Mineral Processing, 10 September 2016, Vol. 154, pp. 53–65.

4. Sedinkina N. A., Gorlova O. E., Gmyzina N. Ju., Degodja E. Ju. Study of a possibility of enrichment of fine-crushed magnetite ore by dry magnetic separation. Chernaya Metallurgiya. Byulleten’ Nauchno-Tekhnicheskoy i Ekonomicheskoy Informatsii. 2019. Vol.75, no. 5. pp. 564–572. [In Russ].

5. Sunil Kumar Tripathy, Nikkam Suresh. Influence of particle size on dry high-intensity magnetic separation of paramagnetic mineral. Advanced Powder Technology, Vol. 28, Is. 3, March 2017, pp. 1092–1102.

6. Pelevin A. E., Sytykh N. A. Increased magnetic field induction separators in titanium magnetite ore processing. Obogashchenie Rud. 2020, no 2, pp. 15–20. [In Russ]. DOI: 10.17580/or.2020.02.03.

7. Kvaskov A. P. Tekhnologicheskaya effektivnost’ i skhemy obogashcheniya zheleznyh rud magnetitovogo tipa [Technological efficiency and schemes for processing iron ores of the magnetite type], Leningrad, Mehanobr, 1958, Is. 105, 159 p. [In Russ].

8. Sunil Kumar Tripathy, Veerendra Singh, Y Rama Murthy, P K Banerjee, Nikkam Suresh. Influence of process parameters of dry high intensity magnetic separators on separation of hematite. International Journal of Mineral Processing, 10 March, 2017, Vol. 160, рр. 16—31.

9. Vaisberg L. A., Dmitriev S. V., Mezenin A. O. Controllable magnetic anomalies in mineral processing technologies. Gornyi Zhurnal, 2017, no. 10. pp. 26–32. [In Russ]. DOI: 10.17580/gzh.2017.10.06.

10. Pelevin A. E. Improving magnetite concentrate quality in an alternating magnetic field. Obogashchenie Rud. 2019, no. 6, pp. 19–24. [In Russ]. DOI: 10.17580/or.2019.06.04.

11. Pelevin A. E., Sytykh N. A. Fine hydraulic screening for staged separation of titaniummagnetite concentrate. Obogashchenie Rud. 2021, no 1, pp. 8–14. [In Russ]. DOI: 10.17580/or.2021.01.02.

12. Samayamutthirian Palaniandy, Rinto Halomoan, Hidemasa Ishikawa. TowerMill circuit performance in the magnetite grinding circuit The multi-component approach. Minerals Engineering, Vol. 133, 15 March 2019, рр. 10–18.

13. Darius Markauskas, Harald Kruggel-Emden. Coupled DEM-SPH simulations of wet continuous screening. Advanced Powder Technology, December 2019, Vol. 30, Iss. 12, рр. 2997–3009.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.