Effect of sulfoxide-based modifiers on sulfide mineral floatability and on production data of ore flotation

The article describes the research findings on the formation and stability of sulfurbearing ions in the water phase of pulp slurries depending on the medium pH and on the duration of tempering agents–modifiers from the class of sulfoxides. In flotation of nonferrous metals with sulfur-bearing modifiers, the influence of the latter mainly depends on the value of pH and on the tempering duration which governs stability of the modifiers. For example, floatability of pyrite is lower in a greater degree at pHinit–8 with Na2S2O3, Na2S2O4, NH4HSO3, Na2SO3. The productivity of flotation of Uchaly copper–zinc ore is higher with Na2SO3, Na2S2O3 and NH4HSO3 at pHinit–8 as compared with SO2. The selectivity index is higher with Na2SO3 (6,3) as against SO2 (5,3), Na2S2O3 (5,0) and NH4HSO3 (3,2). The increase in the consumption of the modifiers over 1 kg/t decreases the floatability of copper sulfides. In the standard reagent modes of flotation of Uzelga pyritic copper–zinc ore, the increased concentration of sodium thiosulfate from 0.3 to 1 g/l reduces the copper recovery from 61 to 19%. The selectivity index in flotation of copper sulfides at Na2S2O3 = 0,3 g/l, pH–8,0 and ORP = +120 mV totals 3.31 as against 1.68 at Na2S2O3 = 1 g/l, pH–11,5 and ORP = –30 mV.

Keywords: sulfides, ore, modifiers, oxidation, recovery, electrochemistry, flotation, technology.
For citation:

Bocharov V. А., Ignatkina V. A., Abrytin D. V., Kayumov А. А., Kayumova V. R. (Korzh). Effect of sulfoxide-based modifiers on sulfide mineral floatability and on production data of ore flotation. MIAB. Mining Inf. Anal. Bull. 2022;(12):20-33. [In Russ]. DOI: 10.25018/0236_1493_2022_12_0_20.

Acknowledgements:

The study was supported by the Russian Foundation for Basic Research, Project No. 20-05-00157.

Issue number: 12
Year: 2022
Page number: 20-33
ISBN: 0236-1493
UDK: 622.765
DOI: 10.25018/0236_1493_2022_12_0_20
Article receipt date: 20.07.2022
Date of review receipt: 26.09.2022
Date of the editorial board′s decision on the article′s publishing: 10.11.2022
About authors:

V.A. Bocharov1, Dr. Sci. (Eng.), Professor, ORCID ID: 0000-0002-8233-9635,
V.A. Ignatkina1, Dr. Sci. (Eng.), Professor, e-mail: woda@mail.ru, ORCID ID: 0000-0003-2552-206X,
D.V. Abrytin, Cand. Sci. (Eng.), Deputy General Director, OOO «ADV-Inzhiniring», e-mail: abrutin@mail.ru,
A.A. Kayumov1, Cand. Sci. (Eng.), Leading Engineer-Technologist, e-mail: maliaby_92@mail.ru, ORCID ID: 0000-0003-0502-6595,
V.R. Kayumova (Korzh)1, Graduate Student, e-mail: viktoriya.korzh09@gmail.com, ORCID ID: 0000-0001-7527-1284,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

A.A. Kayumov, e-mail: maliaby_92@mail.ru.

Bibliography:

1. Chanturiya V. A., Shadrunova I. V. Tekhnologiya obogashcheniya mednykh i medno-tsinkovykh rud Urala [Technology of enrichment of copper and copper-zinc ores of the Urals], Moscow, Nauka, 2016, 386 p.

2. Ignatkina V. A., Makavetskas A.R., Kayumov A. А., Aksenova D. D. Causes of degradation of production data in flotation of copper-bearing sulfide ore extracted from cupriferous pyrite deposit by open stoping. MIAB. Mining Inf. Anal. Bull. 2021, no. 9, pp. 5—22. [In Russ]. DOI: 10.25018/0236_1493_2021_9_0_5.

3. Kayumov A. A. Povyshenie effektivnosti izvlecheniya mineralov gruppy bleklykh rud iz kolchedannykh medno-tsinkovykh rud na osnove selektivnykh reagentnykh rezhimov flotatsii [Improving the efficiency of extraction of minerals of the group of pale ores from pyrite copper-zinc ores based on selective reagent flotation modes], Candidate’s thesis, Moscow, NITU «MISiS», 2020, 27 p.

4. Can I. B., Özçelik S., Ekmekçi Z. Effects of pyrite texture on flotation performance of copper sulfide ores. Minerals. 2021, no. 11, p. 1218. DOI: 10.3390/min11111218.

5. Molaei N., Hoseinian F. S., Rezai B. A study on the effect of active pyrite on flotation of porphyry copper ores. Physicochemical Problems of Mineral Processing. 2018, vol. 54, no. 3, pp. 922—933. DOI: 10.5277/ppmp1894.

6. Ignatov D. O., Kayumov A. A., Ignatkina V. A. Selective separation of arsenic-containing sulfide minerals. Tsvetnye Metally. 2018, no. 7, pp. 32—38. [In Russ]. DOI: 10.17580/ tsm.2018.07.05.

7. Ignatkina V. A., Bocharov V. A., Kayumov A. A., Aksenova M. Flotation activity of pyrite in the separation of massive sulphide ores. Tsvetnye Metally. 2017, no. 9, pp. 8—14. [In Russ]. DOI: 17580/tsm.2017.09.01.

8. Marsden J. O. Technological innovation and sustainable competitive advantage in the copper industry — Real or imaginary? IMPC 2018, 29th International Mineral Processing Congress. Moscow, 2019, pp. 23—21.

9. Mu Y., Peng Y. Selectively depress copper-activated pyrite in copper flotation at slightly alkaline pH. Mining Metallurgy & Exploration. 2021, vol. 38, pp. 751—762. DOI: 10.1007/ s42461-021-00393-z.

10. Štirbanović Z. The effect of degree of liberation on copper recovery from copper-pyrite ore by flotation. Separation Science and Technology. 2020, vol. 55, no. 17, pp. 3260—3273. DOI: 10.1080/01496395.2019.1676260.

11. Chanturiya V. A., Vigdergauz V. E. Elektrokhimiya sul'fidov. Teoriya i praktika flotatsii [Electrochemistry of sulfides. Theory and practice of flotation], Moscow, Ruda i metally, 2008, 272 p.

12. Javadi A. Sulphide Minerals: Surface oxidation and selectivity in complex sulphide ore flotation. Doctoral thesis. 2015. Luleå University of Technology, Sweden. 48 p.

13. Yufan Mua, Yongjun Peng, Lauten R. A. The depression of pyrite in selective flotation by different reagent systems — A literature review. Minerals Engineering. 2016, vol. 96-97, pp. 143—156. DOI: 10.1016/j.mineng.2016.06.018.

14. Moslemi H., Gharabaghi M. A review on electrochemical behavior of pyrite in the froth flotation process. Journal of Industrial and Engineering Chemistry. 2017, vol. 47, pp. 1—18. DOI: 10.1016/j.jiec.2016.12.012.

15. Ignatkina V. A., Kayumov A. A., Yergesheva N. D. Floatability and calculated reactivity of sulfide minerals and gold. Izvestiya Vuzov. Tsvetnaya Metallurgiya. 2022, vol. 28, no. 4, pp. 4—14. [In Russ]. DOI: 10.17073/0021-3438-2022-4-4-14.

16. Öztürk Y., Bıçak Ö., Özdemir E., Ekmekçi Z. Mitigation negative effects of thiosulfate on flotation performance of a Cu-Pb-Zn sulfide ore. Minerals Engineering. 2018, vol. 122, pp. 142—147, DOI: 10.1016/j.mineng.2018.03.034.

17. Zhao Cao, Xumeng Chen, Yongjun Peng The role of sodium sulfide in the flotation of pyrite depressed in chalcopyrite flotation. Minerals Engineering. 2018, vol. 119, pp. 93—98. DOI: 10.1016/j.mineng.2018.01.029.

18. Mveene L., Subramanian S. Studies on the enrichment of poor copper ore by selective flocculation and flotation methods. Obogashchenie Rud. 2019, no. 3, pp. 15—21. DOI: 10.17580/ or.2019.03.03.

19. Altushkin I. A., Bondarenko N. S., Poviraev Yu. A., Korol' Yu. A. Enrichment of copperzinc ores of the Spring deposit. Tsvetnye Metally. 2017, no. 3, pp. 19—27. [In Russ]. DOI: 10.17580/tsm.2017.03.03.

20. Asonchik K. M., Aksenova G. Ya., Maksimov I. I., Tasina T. I. Investigation of various modes of flotation of porphyry copper ore. Obogashchenie Rud. 2017, no. 4, pp. 18—21. [In Russ]. DOI: 10.17580/or.2017.04.04.

21. Kol'tgof I. M., Bellcher R., Stenger V. A., Matsuyama J. Ob"emnyy analiz, t. 3. [Volumetric analysis, vol. 3], Moscow, Goskhimizdat, 1961, pp. 350—358.

22. Manakhova S. V., Onokhina N. A. Vvedenie v khimicheskiy analiz neorganicheskikh soedineniy [Introduction to the chemical analysis of inorganic compounds], Arkhangel'sk: SAFU, 2014, 119 p.

23. Kharitonov Yu. Yu. Analiticheskaya khimiya. Analitika 2. Kolichestvennyy analiz. Fizikokhimicheskie (instrumental'nye) metody analiza [Analytical chemistry. Analytics 2. Quantitative analysis. Physico-chemical (instrumental) methods of analysis], Moscow, GEOTAR-Media, 2014, 656 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.