Impact of unstable drilling on energy efficiency of drill rotor drive

The article describes new research findings on operation of asynchronous motor drive of drill rotor in the modes of unstable drilling accompanied with the stick–slip effect and intrinsic undesirable consequences. Earlier, the authors constructed models of adjustable dcand ac-drives of drill rotor. The studies revealed the necessity to update the mechanical simulation model of the drill bit drag torque and to change from the stochastic model to an integrated model which includes more details of physics of drilling and the impact of drilling mode parameters on the bit drag torque. A new modification is developed for the general computer model of asynchronous motor drive of drill rotor. The modeling and experimental data comparison proves the modeling equivalence of processes caused by free vibrations and torsional vibrations in the model of unstable bit rotation. Specific attention is paid to the impact of unstable drill rotation on energy efficiency of drill rotor drive, and the output parameters of the general model are added with the energy data in this respect. The computer modeling of drilling modes revealed the impact of the process variables on the energy data.

Keywords: rotary drilling, stick–slip effect, asynchronous drive, energy efficiency, computer modeling.
For citation:

Ershov M. S., Feoktistov E. A. Impact of unstable drilling on energy efficiency of drill rotor drive. MIAB. Mining Inf. Anal. Bull. 2022;(1):148-161. [In Russ]. DOI: 10.25018/0236_1493_2022_1_0_148.

Acknowledgements:
Issue number: 1
Year: 2022
Page number: 148-161
ISBN: 0236-1493
UDK: 622.817:621.311
DOI: 10.25018/0236_1493_2022_1_0_148
Article receipt date: 04.09.2021
Date of review receipt: 06.10.2021
Date of the editorial board′s decision on the article′s publishing: 10.12.2021
About authors:

M.S. Ershov, Dr. Sci. (Eng.), Professor, e-mail: msershov@yandex.ru, Gubkin Russian State University of Oil and Gaz (National Research University), 119991, Moscow, Russia, ORCID 0000-0002-7772-0095,
E.A. Feoktistov, Student, e-mail: Eugene.Feoktistov@yandex.ru Moscow Institute of Physics and Technology (National Research University), 141700, Moscow, Russia, ORCID 0000-0002-9490-3854.

 

For contacts:

M.S. Ershov, e-mail: msershov@yandex.ru

Bibliography:

1. Kreisle L. F., Vance J. M. Mathematical analysis of the effect of shock sub on the longitudinal vibrations of an oil-well drill-string. Society of Petroleum Engineers Journal. 1970, no. 2, pp. 349—356.

2. Simonov N. G., Yunin E. K. Vliyanie kolebatel’nykh protsessov na rabotu buril’nogo insrumenta [Effect of oscillatory processes on operation of drilling equipment], Moscow, Nedra, 1977, 217 p.

3. Belokobyl’skii S.V., Vetyukov M. M., Nagaev R. F. On frictional self-oscilations of the drill string. Izvestya AN SSSR. Mashinovedenie. 1982, no. 2, pp. 15—20. [In Russ].

4. Yang Liu, Wei Lin, Joseph Páez Chávez, Rulston De Sa Torsional stick-slip vibrations and multistability in drill-strings. Applied Mathematical Modelling. 2019, vol. 76, pp. 545—546.

5. Aarsnes U. J., Van de Wouw N. Dynamics of a distributed drill string system: characteristic parameters and stability maps. Journal of Sound and Vibration. 2018, vol. 417, no. 37, pp. 376— 412. DOI: 16/j.jsv.2017.12.002.

6. Liping Tang, Xiaohua Zhu Effects of drill string length on stick–slip oscillation of the oilwell drill string. Iranian Journal of Science and Technology. Transactions of Mechanical Engineering. 2019, vol. 44, pp. 2—11. DOI: 10.1007/s40997-019-00279-y.

7. Saldivar B., Mondie S., Avila Vilchis J. C. The control of drilling vibrations. A coupled PDE-ODE modeling approach. International Journal of Applied Mathematics and Computer Science. 2016, vol. 26, no. 2, pp. 335—349.

8. Koronatov V. A. Fundamentals of the mathematically rigorous theory of deep drilling. Systemy. Metody. Tekhnologii. 2020, no. (46), pp. 23—29. [In Russ]. DOI: 10.18324/2077-54152020-2-23-29.

9. Tang L., Zhu X., Qian X., Shi C. Effects of weight on bit on torsional stick-slip vibration of oil well drill string. Journal of Mechanical Science and Technology. 2017, vol. 31, no. 10, pp. 4589–4597.

10. Litvinenko V. S., Dvoinikov M. V. Justification of the choice of parameters of the well drilling mode by rotary controlled systems. Journal of Mining Institute. 2019, vol. 235, pp. 24—29. [In Russ].

11. Monteiro H. L. S., Trindade M. A. Performance analysis of proportional-integral feedback control for the reduction of stick-slip-induced torsional vibrations in oil well drillstrings. Journal Sound and Vibration. 2017, vol. 398, pp. 28—38.

12. Ritto T. G., Ghandchi-Tehrani M. Active control of stick-slip torsional vibrations in drillstrings. Journal of Vibration and Control. 2018, vol. 25, no. 1, pp. 1—9. DOI: 10.1177/10775463-1877-4-240.

13. Wei Lin, Joseph Paez Chavez, Yang Liu, Yingxin Yang, Yuchun Kuang Stick-slip suppression and speed tuning for a drill-string system via proportional-derivative control. Applied Mathematical Modelling. 2020, vol. 82, pp. 2—19.

14. Bukreev S. V. Effects of valve-and-induction motor drives on transient processes in exploration drilling string. MIAB. Mining Inf. Anal. Bull. 2017, no. 10, pp. 219—225. [In Russ]. DOI: 10.25018/0236-1493-2017-10-0-219-225.

15. Rukovodstvo po ekspluatatsii PDC dolot dlya polevykh inzhenerov. Kompanya BP, available at: http://drillpoint.ru/uploads/files/Rukovodstvo%20po%20ekspluatacii%20PDC%20 dolot%20dlya%20polevyh%20inzhenerov.pdf (accessed 25.11.2020).

16. Ershov M. S., Balitsky V. P., Melik-Shakhnazarova I. A. Rotary table DC drive operation under conditions of unstable rotation of drill bit. MIAB. Mining Inf. Anal. Bull. 2020, no. 11, pp. 166—179. [In Russ]. DOI: 10.25018/0236-1493-2020-11-0-166-179.

17. Ershov M. S., Komkov A. N., Feoktistov E. A. Operation of DC and AC drives of rotary table in unstable rotation mode of drill bit. MIAB. Mining Inf. Anal. Bull. 2021, no. 6, pp. 153— 167. [In Russ]. DOI: 10.25018/0236_1493_2021_6_0_160.

18. Melkebeek J. A. Electrical machines and drives. Fundamentals and advanced modelling. Power Systems. Springer International Publishing AG, 2018, 740 p.

19. Hoang L. Modelling and simulation of electrical drives using MATLAB/Simulink and Power System Blockset. IECON'01. 27th Annual Conference of the IEEE Industrial Electronics Society. 2001, vol. 3, pp. 1603—1611.

20. Yunin E. K. Vliyanie v dinamiku glubokogo burenya [Introduction to the dynamics of deep drilling], Moscow, 2015, 168 p.

21. Zalyaev M. F. The exploration of vibration while drilling wells on Termokarstovoe gas deposit. Petroleum engineering. 2015, vol. 13, no. 4, pp. 36—40. [In Russ].

22. Lukyanov E. V., Kudasheva C. V. Metodicheskie rekomendatsii po interpretatsii dannykh GTI [Methodological recommendations for the interpretation of geotechnological research data], Novosibirsk, 2016, 512 p.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.