Influence of tailings pond water content on hydrogeomechanical condition of embankment at concentrating plant: 3D modeling

Authors: Kalashnik N.A.

Subject of research is a tailings pond at a concentrating plant of a mining enterprise as a complex hydraulic structure with its environmental and industrial safety greatly governed by the volume and condition of tailings, as well as by their water content. Water in tailings ponds should be within design levels, with formation of sufficiently long embankment beaches. In the meanwhile, because of the factors of nature (rainfalls, floods) and technology (industrial effluents), water saturation of tailings ponds can reach and even exceed the maximal design value. For this reason, the aim of this study is to reveal regular influence exerted by the degree of water saturation of a tailings pond at a concentrating plant on hydrogeomechanics, seepage and deformation of an embankment. The research method was 3D modeling of a part of a tailings pond as a case-study of a mining enterprise in the Kola Region, and computer modeling of induced seepage and deformation processes at different values of water in the tailings pond. The research results are the calculated values which characterize the resultant hydrogeomechanical condition of the embankment as function of the water content of the tailings pond. An approach is proposed to constructing a research framework for problem solving on industrial safety of tailings pond at concentrating plants in case that their water content is greatly dependent on natural and induced factors.

Keywords: mining enterprise, tailings pond, pondage, water content, embankment, seepage, hydrogeomechanical condition, 3D modeling, industrial safety.
For citation:

Kalashnik N. A. Influence of tailings pond water content on hydrogeomechanical condition of embankment at concentrating plant: 3D modeling. MIAB. Mining Inf. Anal. Bull. 2025;(5):144-155. [In Russ]. DOI: 10.25018/0236_1493_2025_5_0_144.

Acknowledgements:
Issue number: 5
Year: 2025
Page number: 144-155
ISBN: 0236-1493
UDK: 622’17:004.9
DOI: 10.25018/0236_1493_2025_5_0_144
Article receipt date: 27.06.2024
Date of review receipt: 18.07.2024
Date of the editorial board′s decision on the article′s publishing: 10.04.2025
About authors:

N.A. Kalashnik, Researcher, Mining Institute, Kola Scientific Centre of Russian Academy of Sciences, 184209, Apatity, Russia, e-mail: n.kalashnik@ksc.ru, ORCID ID: 0000-0001-7651-6562.

 

For contacts:
Bibliography:

1. Kalashnik А. I. Integrated research and monitoring of mine tailings on the Kola Peninsula. Gornyi Zhurnal. 2020, no. 9, pp. 101—106. [In Russ]. DOI: 10.37490/S221979310025285-6.

2. Tao M., Zhang X., Wang S., Cao W., Jiang Y. Life cycle assessment on lead—zinc ore mining and beneficiation in China. Journal of Cleaner Production. 2019, vol. 237, article 117833. DOI: 10.1016/j. jclepro.2019.117833.

3. Abdygaziev K. K., Chukin R. B., Samagan U. B. Investigation of the development of a hydrodynamic accident associated with the spread of unconsolidated liquid flow during overflow over the crest of the Kumtor mine tailings dam. Herald of KRSU. 2022, vol. 22, no. 12, pp. 93—99. [In Russ]. DOI: 10.36979/1694-500X-2022-22-12-93-99.

4. Fortuna J., Waterhouse J., Chapman P., Gowan M. Applying practical hydrogeology to tailings storage facility design and management. Mine Water and the Environment. 2021, vol. 40, pp. 50—62. DOI: 10.1007/s10230-020-00739-x.

5. Zongjie L., Junrui C., Zengguang X., Yuan Q., Jing C. A comprehensive review on reasons for tailings dam failures based on case history. Advances in Civil Engineering. 2019, article 4159306, available at: https://www.hindawi.com/journals/ace/2019/4159306/ (accessed 22.03.2022).

6. Owen J. R., Kemp D., Lèbre É., Svobodova K., Pérez Murillo G. Catastrophic tailings dam failures and disaster risk disclosure. International Journal of Disaster Risk Reduction. 2020, vol. 42, article 101361. DOI: 10.1016/j.ijdrr.2019.101361.

7. Shchiptsov V. V., Tishkov S. V., Volkov A. D. The current state and development prospects of the tailing dump of the monotown of the Arctic zone (on the example of Karelsky Okatysh JSC). Gornyi Zhurnal. 2023, no. 2, pp. 68—73. [In Russ]. DOI: 10.17580/gzh.2023.02.11.

8. Song X., Pettersen J. B., Pedersen K. B., Røberg S. Comparative life cycle assessment of tailings management and energy scenarios for a copper ore mine. A case study in Northern Norway. Journal of Cleaner Production. 2017, vol. 164, pp. 892—904. DOI: 10.1016/j.jclepro.2017.07.021.

9. Tost M., Hitch M., Chandurkar V., Moser P., Feiel S. The state of environmental sustainability considerations in mining. Journal of Cleaner Production. 2018, vol. 182, pp. 969—977. DOI: 10.1016/ j.jclepro.2018.02.051.

10. Muniruzzaman M., Karlsson T., Ahmadi N., Role M. Multiphase and multicomponent simulation of acid mine drainage in unsaturated mine waste: Modeling approach, benchmarks and application examples. Applied Geochemistry. 2020, vol. 120, article 104677. DOI: 10.1016/j.apgeochem. 2020.104677.

11. Kalashnik N. A. Assessment of filtration and deformation processes in the tailing dam based on 3d-modeling. Russian Mining Industry Journal. 2024, no. 1, pp. 100—104. [In Russ]. DOI: 10.30686/ 1609-9192-2024-1-100-104.

12. Kalashnik N. A. Influence of water filtration rate on the functionality of the mining tailings dam. Journal of Physics Conference Series. 2022, vol. 2388, no. 1, article 012149. DOI: 10.1088/17426596/2388/1/012149.

13. Khrapov S. S. Numerical modeling of hydrodynamic accidents: Erosion of dams and flooding of territories. Vestnik of Saint Petersburg University. Mathematics. Mechanics. Astronomy. 2023, vol. 10, no. 2, pp. 357—373. [In Russ]. DOI: 10.21638/spbu01.2023.215.

14. Khrapov S. S. Numerical modeling of self-consistent dynamics of shallow and ground waters. Mathematical physics and computer simulation. 2021, vol. 24, no. 3, pp. 45—62. [In Russ]. DOI: 10.15688/mpcm.jvolsu.2021.3.5.

15. Sharipov D. Sh. Hydrodynamic and hydrostatic forces as factors affecting the stability of tailings. Earth science and subsoil use. 2021, no. 44(1), pp. 63—72. [In Russ]. DOI: 10.21285/2686-99932021-44-1-63-72.

16. Lolaev A., Oganesyan A., Badoev A. S., Oganesyan E. Tailing dams formation algorithm. Arabian Journal of Geosciences. 2020, vol. 13, no. 19, article 974. DOI: 10.1007/s12517-020-05990-8.

17. Belosludtseva Yu. O., Kotlov O. N. Temperature regime forecast of hydraulic structures taking into account filtration flow. Izvestiya Vserossiyskogo nauchno-issledovatel'skogo instituta gidrotekhniki im. B.E. Vedeneeva. 2024, vol. 311, pp. 65—74. [In Russ].

18. Muller S., Lassin A., Lai F., Thiéry D., Guignot S. Modelling releases from tailings in life cycle assessments of the mining sector: From generic models to reactive transport modeling. Minerals Engineering. 2022, vol. 180, no. 6, article 107481. DOI: 10.1016/j.mineng.2022.107481.

19. Solsky S. V., Gladshtein O. I., Zelensky I. G. Cutting-edge solutions for application of geosynthetic materials on ground structures. The Hydrotechnika. 2023, no. 4 (73), pp. 62—67. [In Russ]. DOI: 10.55326/22278400_2023_4_62.

20. Sherkhov A. Kh., Gergokova Z. Zh. Assessment of the current state of some components of the complex of hydraulic structures of the tailing dump of the Tyrnyauz mining and processing plant. Prirodoobusrrojstvo. 2022, no. 4, pp. 100—106. [In Russ]. DOI: 10.26897/1997-6011-2022-4-100-106.

21. Obrzud R. F., Truty A. The hardening soil model — a practical guidebook. Revised 21.10.2018. 2018, 216 p., available at: http://www.zsoil.com/zsoil_manual_2018/Rep-HS-model.pdf (accessed 11.09.2023).

22. SP 39.13330.2012. Plotiny iz gruntovykh materialov [SP 39.13330.2012. Dams made of ground materials]. Мoscow, 2012, pp. 34. [In Russ], available at: https:// docs.cntd.ru/document/1200095521?ysclid=lxohf3z2jy963752248.

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.