Manmade flow impact on geochemical background of Se and Te in soil in copper–pyrite mining region in the Soimonov valley

The copper pyrite ore mining and processing has been carried out in the Soimonov valley in the Chelyabinsk Region for more than 100 years, with crude copper production at Karabashmed. The treatment process includes milling and flotation. As a consequence, in the Soimonov valley, in the neighborhood of the mining and processing activities, millions of tons of slugs and tailings are put into storage. In addition to gas and dust emission and dust flows from the dumps of the old mines, the Karabash geochemical anomaly has set in this area. The bulk of impact in the course of migration of elements involved in the geochemical circulation is taken by such repository media as soils. As a result, the overall geoecological situation in the valley worsens. The work cycle of copper smelting avoids capitation of such associate elements as Se and Te, which are greatly dangerous to health if reach high concentrations. The article examines the sources of Se and Te in soils in the Soimonov valley. The studies included setting of 25 soil sections to analyze the rate of pollution of soil with the listed elements. The soil samples were tested for the acidity, organic carbon content, grain size composition and gross Se and Te. The amount of the pollutants in soils was determined by the method of energy dispersive X-ray fluorescence spectroscopy. Using the lab-scale testing results, the eco-geochemical condition of soil was determined based on the calculated concentration factor Kc. The background concentrations of the test pollutants in soil are found: Se—0.26 mg/kg; Te—0.06 mg/kg, with regard to the regional pollution level. The local sites with the high contents of Se and Te are detected in soil, and their spatial distributions are mapped. The areas of the increased Se and Te background by 18 and 51 times, respectively, are delineated. The research findings can contribute to more efficient ecological control and safety in the region, and to the process cycle upgrading to eliminate entrance of hazardous elements in soil.

Keywords: Soimonov valley, geochemical anomaly, Karabash, techno genesis, Se and Te in soil, soil pollution, mining and processing integrated works, copper–pyrite deposit, tailings storage.
For citation:

Shabanov M. V., Marichev M. S., Minkina T. M., Nevidomskaya D. G., Shuvaeva V. A. Manmade flow impact on geochemical background of Se and Te in soil in copper– pyrite mining region in the Soimonov valley. MIAB. Mining Inf. Anal. Bull. 2023;(5-1):86-103. [In Russ]. DOI: 10.25018/0236_1493_2023_51_0_86.

Acknowledgements:

The study was supported by the Russian Science Foundation, Project No 21-77-20089, in Southern Federal University.

Issue number: 5
Year: 2023
Page number: 86-103
ISBN: 0236-1493
UDK: 631.41
DOI: 10.25018/0236_1493_2023_51_0_86
Article receipt date: 12.01.2023
Date of review receipt: 15.03.2023
Date of the editorial board′s decision on the article′s publishing: 10.04.2023
About authors:

M.V. Shabanov1, Cand. Sci. (Agric.), Assistant Professor, e-mail: geohim.spb@gmail.com, Scopus Author ID: 35171489500, ORCID ID: 0000-0003-4725-3673,
M.S. Marichev1, Cand. Sci. (Biol.), Head of Laboratory, e-mail: m.s.marichev@yandex.ru, Scopus Author ID: 57216298057, ORCID ID: 0000-0003-0429-2234,
T.M. Minkina2, Dr. Sci. (Biol.), Professor, Head of Chair, e-mail: minkina@sfedu.ru, Scopus Author ID: 15063165400, ORCID ID: 0000-0003-3022-0883,
D.G. Nevidomskaya2, Cand. Sci. (Biol.), Leading Researcher, e-mail: dnevidomskaya@mail.ru, Scopus Author ID: 6505510923, ORCID ID: 0000-0002-0138-4443,
V.A. Shuvaeva2, Dr. Sci. (Phys. Mathem.), Leading Researcher, e-mail: v_shuvaeva@mail.ru, Scopus Author ID: 7004352543,
1 Saint-Petersburg State Agrarian University, Saint-Petersburg, Pushkin, Russia,
2 Southern Federal University, 344006, Rostov-on-Don, Russia.

 

For contacts:

M.S. Marichev, e-mail: m.s.marichev@yandex.ru.

Bibliography:

1. Znamensky S. E., Znamenskaya N. A. Classification of gold deposits of the Eastern slope of the Southern Urals. Geologicheskiy sbornik. 2009, no. 8, pp. 177—186. [In Russ].

2. Murzin V. V., Varlamov D. A., Ronkin Yu. L., Shanina S. N. Origin of gold-bearing rodingites of the Karabash massif of Alpinotypic hyperbasites in the Southern Urals. Geologiya Rudnykh Mestorozhdenij. 2013, vol. 55, no. 4, pp. 320—341. [In Russ].

3. Abaturova I. V., Petrova I. G., Boltyrov V. B., Klokova Ju. V. Features of environmental assessment at ore gold deposits in the Irkutsk region and Yakutia. MIAB. Mining Inf. Anal. Bull. 2022, no. 11-1, pp. 5—17. [In Russ]. DOI: 10.25018/0236_1493_2022_111_0_5.

4. Kulikova A. A., Sergeeva Yu. A., Ovchinnikova T. I., Khabarova E. I. Formation of mine water composition and analysis of treatment methods. MIAB. Mining Inf. Anal. Bull. 2020, no. 7, pp. 135—145. [In Russ]. DOI: 10.25018/0236-1493-2020-7-0-135-145.

5. Elokhin V. A. Geochemical transformation of soil in the influence zone of ash dump in 2006–2020. MIAB. Mining Inf. Anal. Bull. 2021, no. 11-1, pp. 98—110. [In Russ]. DOI: 10.25018/0236_1493_2021_111_0_98.

6. Annandale J. M., Gorbunova T. L., Gudkova N. K. Process water and waste management in open cast quarries and the possibility of fine sediments rational use. Sustainable Development of Mountain Territories. 2021, vol. 13, no. 1, pp. 7—15. DOI: 10.21177/1998-4502-2021-13-1-7-15.

7. Pochechun V. A., Makarov Y. A. Full-scale survey of the Kachkanarsky industrial complex of the Middle Urals and assessment of its impact on the soil. MIAB. Mining Inf. Anal. Bull. 2022, no. 11-1, pp. 68—79. [In Russ]. DOI: 10.25018/0236_1493_2022_111_0_68.

8. Skopintseva O. V., Ganova S. D., Buzin A. A., Fedotova V. P. Measures to reduce dusting during loading and transportation of solid mineral resources. Gornyi Zhurnal. 2019, no. 12, pp. 76—79. [In Russ]. DOI: 10.17580/gzh.2019.12.16.

9. Pinsky D. L., Minkina T. M., Bauer T. V., Nevidomskaya D. G., Shuvaeva V. A., Manjieva S. S., Tsitsuashvili V. S., Burachevskaya M. V., Chaplygin V. A., Barakhov A. V., Veligzhanin A. A., Svetogorov R. D., Khramov E. V., Iovcheva A. D. Identification of heavy metal compounds in technogenically transformed soils by methods of sequential fractionation, XAFSspectroscopy and XRD powder diffraction. Eurasian Soil Science. 2022, no. 5, pp. 600—614. [In Russ]. DOI: 10.31857/S0032180X22050070.

10. Boltyrov V. B., Storozhenko L. A., Sapsay M. A. Cumulative ecological impact in the territory of long-term disposal of old mining waste. MIAB. Mining Inf. Anal. Bull. 2021, no. 5-2, pp. 202—217. [In Russ]. DOI: 10.25018/0236_1493_2021_52_0_202.

11. Shabanov M. V., Marichev M. S. Assessment of the transformation of natural-territorial complexes in mining technogenesis. Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2020, vol. 331, no. 3, pp. 90—99. [In Russ]. DOI: 10.18799/24131830/2020/3/2535.

12. Usmanov A. I., Gorbunov A. V. Change in properties of manmade soil in reclamation using peat–diatomite improver. MIAB. Mining Inf. Anal. Bull. 2021, no. 5-2, pp. 283—294. [In Russ]. DOI: 10.25018/0236_1493_2021_52_0_283.

13. McLinden C., Fioletov V., Shephard M., Krotkov N., Can Li, Martin R. V., Moran M. D., Joiner J. Space-based detection of missing sulfur dioxide sources of global air pollution. Nature Geoscience. 2016, vol. 9, pp. 496—500. DOI: 10.1038/ngeo2724.

14. Khamkhash V., Srivastava T., Ghosh G., Akdogan R., Ganguli S. Aggarwal Mining-related selenium contamination in Alaska, and the and the State of Current Knowledge. Minerals. 2017, vol. 7, no. 46, pp. 1—13. DOI: 10.3390/min7030046.

15. Schirmer T., Koschinsky A., Bau M. The ratio of tellurium and selenium in geological material as a possible paleo-redox proxy. Chemical Geology. 2014, vol. 376, pp. 44—51. DOI: 10.1016/j.chemgeo.2014.03.005.

16. Keith M., Smith D. J., Jenkin G. R. T., Holwell D. A., Dye M. D. A review of Te and Se systematics in hydrothermal pyrite from precious metal deposits: insights into ore-forming processes. Ore Geology Reviews. 2017, vol. 96, pp. 269—282. DOI: 10.1016/j.oregeorev.2017.07.023.

17. Deditius A. P., Reich M., Kesler S. E., Utsunomiya S., Chryssoulis S. L., Walshe J., Ewing R. C. The coupled geochemistry of Au and As in pyrite from hydrothermal ore deposits. Geochimica et Cosmochimica Acta. 2014, vol. 140, pp. 644—670. DOI: 10.1016/j.gca.2014.05.045.

18. Tanner D., Henley R. W., Mavrogenes J. A., Holden P. Sulfur isotope and trace element systematics of zoned pyrite crystals from the El Indio Au-Cu-Ag deposit. Contributions to Mineralogy and Petrology. 2016, vol. 171, no. 4, pp. 1—17. DOI: 10.1007/s00410-016-1248-6.

19. Karpov A. M., Talnov E. S. Trace elements in pyrite — indicators of mineral formation conditions. Izvestia of Saratov University. 2004, vol. 4, no. 1-2, pp. 60—63. [In Russ].

20. Onufrienok V. V. Analysis of the positions of impurity atoms in the structure of pyrite. Modern high technologies. 2013, no. 6, pp. 186—192. [In Russ].

21. Hechler J., Udachin V., Aminov P., Beckett P., Spiers G. Efflorescent sulfate minerals of the Karabash mining/smelting area, Ural Mountains, Russia. Mineralogy. 2018, vol. 4, no. 4, pp. 96—101.

22. Izquierdo M., Querol X. Leaching behavior of elements from coal combustion fly ash: An overview. International Journal of Coal Geology. 2012, vol. 94, pp. 54—66. DOI: 10.1016/J. COAL.2011.10.006.

23. Sokolov A. A., Fomenko O. A., Ignatev I. V. Development of algorithms for control and control of electric power parameters based on information-measuring system data. Journal of Physics: Conference Series. 2022, vol. 2176, no. 1, article 012076. DOI: 10.1088/17426596/2176/1/012076.

24. Shestopalov V. L., Fomenko V. A., Sokolov A. A., Miroshnikov A. S. Comparative analysis of deformation methods for seismic activity monitoring in mountainous areas of the Black sea coast and Kamchatka. Sustainable Development of Mountain Territories. 2021, vol. 13, no. 4. 535—543. [In Russ]. DOI: 10.21177/1998-4502-2021-13-4-535-543.

25. Wen H., Carignan J. Reviews on atmospheric selenium: Emissions, speciation, and fate. Atmospheric Environment. 2007, vol. 41, pp. 7151—7165. DOI: 10.1016/j.atmosenv.2007.07.035.

26. Sokolov A. A., Samonova K. V., Umarkhadzhiev M.-K. R. Methodological support for increasing the technological potential in industry according to technological potential level and cyclical development. Journal of Physics: Conference Series. 2022, vol. 2176, no. 1, article 012095. DOI: 10.1088/1742-6596/2176/1/012095.

27. Aminov P. G., Filippova K. A., Udachin V. N. Accumulation of heavy metals by Pinussylvestris bark in the gradient field of element dispersion (Karabash geotechnical system, Southern Urals). Nauka YUUrGU: Materialy 69-y nauchnoy konferentsii [Science South Ural State University: Materials of the 69th scientific conference], Chelyabinsk, Izdatel'skiy tsentr YUUrGU, 2017, pp. 62—70. [In Russ].

28. Minkina T. M., Nevidomskaya V. A., Shuvaeva V. A., Linnik V. G., Tsitsuashvili V. S. X-ray studies of Zn in soils of the Southern Urals during mining technogenesis. Gornye ekosistemy i ikh komponenty: Materialy VIII Vserossiyskoy konferentsii s mezhdunarodnym uchastiem, posvyashchennoy Godu nauki i tekhnologiy v Rossiyskoy Federatsii [Mountain ecosystems and their components: Proceedings of the VIII All-Russian Conference with international participation, dedicated to the Year of Science and Technology in the Russian Federation], Nal'chik, IEGT RAN, 2021, pp. 17. [In Russ].

29. Shabanov M. V., Marichev M. S. Geochemical anomalies of heavy metals in soils of natural and anthropogenic landscapes (by the example of Krasnouralsky industrial area). Bulletin of the Tomsk Polytechnic University. Geo Assets Engineering. 2022, vol. 333, no. 6, pp. 230—239. [In Russ]. DOI 10.18799/24131830/2022/6/3545.

30. Bosikov I. I., Klyuev R. V., Dmitrak Yu. V. Analysis of hazardous processes in the natural industrial system. Advances in Raw Material Industries for Sustainable Development Goals. 2021, pp. 422—429. DOI: 10.1201/9781003164395-53.

31. IUSS Working Group WRB. 2015. World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. Word Soil Resources Report. Rome, 2014. N 106. Food and Agriculture Organization. 181 p.

32. Shishov L. L., Tonkonogov V. D., Lebedeva I. I., Gerasimova M. I. Klassifikatsiya i diagnostika pochv Rossii [Classification and diagnostics of soils in Russia], Smolensk, Oykumena, 2004, 341 p.

33. Alekseenko V. A. Geokhimiya landshafta i okruzhayushchaya sreda [Geochemistry of landscape and environment], Moscow, Nedra, 1990, 142 p.

34. Hu Z., Gao S. Upper crustal abundances of trace elements: A revision and update. Chemical Geology. 2008, vol. 253, pp. 205—221. DOI: 10.1016/j.chemgeo.2008.05.010.

35. Ermakov V. V. Subregions and biogeochemical provinces of the USSR with different content of selenium. Trudy biogeokhimicheskoy laboratorii. 1978, vol. 15, pp. 54—57. [In Russ].

36. Konova N. I. To a question on biogeochemistry of selenium in various geochemical conditions. Microelements. 1993, no. 33, pp. 43—48. [In Russ].

37. Vodyanitsky Y. N. State and behavior of natural and anthropogenic forms of As, Sb, Se, Te in ore dumps and contaminated soils (literature review). Eurasian Soil Science. 2010, no. 1, pp. 37—46. [In Russ].

38. Ryser A. L., Strawn D. G., Marcus M. A., Fakra S., Johnson-Maynard J. L., Moller G. Microscopically focused synchrotron X-ray investigation of selenium speciation in soils developing on reclaimed mine lands. Environmental Science & Technology. 2006, vol. 40, no. 2, pp. 462—467. DOI: 10.1021/es051674i.

39. Ponomareva N. A., Stepanova I. P., Koneva I. V. On the toxic effects of tellurium on the animal organism. Omsk Scientific Bulletin. Natural Sciences. 2006, no. 10 (50), pp. 85—88. [In Russ].

40. Qin H-B., Takeichi Y., Nitani H., Terada Y., Takahashi Y. Tellurium distribution and speciation in contaminated soils from abandoned mine tailings: Comparison with Selenium. Chemistry, Medicine. Environmental Science and Technology. 2017, vol. 51, no. 11, pp. 6027—6035. DOI: 10.1021/acs.est.7b00955.

41. Saha U., Fayiga A., Sonon L. Selenium in the soil-plant environment: A review. International Journal of Applied Agricultural Sciences. 2017, vol. 3, no. 1, pp. 1—18. DOI: 10.11648/j. ijaas.20170301.1.

42. Chen Y. W., Li L., D'Ulivo A., Belzile N. Extraction and determination of elemental selenium in sediments — A comparative study. Analytica Chimica Acta. 2006, vol. 577, no. 1, pp. 126—133. DOI: 10.1016/j.aca.2006.06.020.

43. Shabanov M. V. Sulfur in geochemically conjugated landscapes Soimonovskaya valley Chelyabinsk region. News of the Ural State Mining University. 2021, no. 1 (61), pp. 118—126. [In Russ]. DOI: 10.21440/2307-2091-2021-1-118-126.

44. Dhillon K. S., Dhillon S. K. Distribution and management of seleniferous soils. Advances in Agronomy. 2003, vol. 79. pp. 119—184. DOI: 10.1016/S0065-2113(02)79003-2.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.