Influence of heading technology on stress state of support in creepable rocks

Authors: Kirienko Y A

The article addresses calculation of loads on lining in vertical mine shafts. Depending on the adopted heading technology, type of support and other parameters, the final support loading is formed. Regarding salt rocks and salt-bearing rocks, the load on the support canchange over the whole service life of an underground opening. With a view to taking a heading technology into account, a stress relaxation factor was determined numerically and analytically in vertical shaft sinking in geological conditions of the Upper Kama potassium–magnesium salt deposit. The applicability of the stress relaxation factor relations in the normative documents is discussed. Based on the curves of elastic displacements of rocks in the time interval of shaft sinking and using the predictive estimates of the further deformation, the need to calculate the values of a* with regard to the rock mass rheology is identified. Since elastic deformations over the whole life Т = 50 years of the shaft reach not more than 10% of the total deformations, the stress relaxation factor is prohibited to exceed this value. The comparative analysis of the adjusting factors a* calculated numerically and analytically is performed, and the algorithm of finding a* for the conditions of shaft sinking in creepable rocks is determined.

Keywords: shaft lining design, heading technology, mine shaft, stress, creep, rock salt, numerical method, finite element method, deformations, stress relaxation factor.
For citation:

Kirienko Yu. A. Influence of heading technology on stress state of support in creepable rocks. MIAB. Mining Inf. Anal. Bull. 2024;(7):38-48. [In Russ]. DOI: 10.25018/ 0236_1493_2024_7_0_38.

Acknowledgements:
Issue number: 7
Year: 2024
Page number: 38-48
ISBN: 0236-1493
UDK: 622.062
DOI: 10.25018/0236_1493_2024_7_0_38
Article receipt date: 27.12.2023
Date of review receipt: 12.02.2024
Date of the editorial board′s decision on the article′s publishing: 10.06.2024
About authors:

Yu.A. Kirienko, Scientific Project Engineer, University of Science and Technology MISIS, 119049, Moscow, Russia, e-mail: 9267810740@mail.ru, ORCID ID: 0000-0002-4575-7328.

 

For contacts:
Bibliography:

1. Silchenko Yu.A., Pleshko M. S. Shaft lining design with regard to sinking technology. MIAB. Mining Inf. Anal. Bull. 2020, no. 11, pp. 96—107. [In Russ]. DOI: 10.25018/0236-1493-2020-11-096-107.

2. Dong-Lin Feng, Huai-Na Wu, Ren-Peng Chen, Fei-Xiang Liu, Man Yao An analytical model to predict the radial deformation of surrounding rock during shaft construction via shaft boring Machine. Tunnelling and Underground Space Technology. 2023, vol. 140, article 105321. DOI: 10.1016/j. tust.2023.105321.

3. Xiaoming Sun, Gan Li, Chengwei Zhao, Yangyang Liu, Chengyu Miao Investigation of deep mine shaft stability in alternating hard and soft rock strata using three-dimensional numerical modeling. Processes. 2018, vol. 7, no 1. DOI: 10.3390/pr7010002.

4. Tiutkin O., Miroshnyk V., Radkevych A., Alkhdour A. Nonuniform stress state of a hoisting shaft lining as a result of disturbance of the ground freezing technology. E3S Web of Conferences. 2019, vol. 109, article 00099. DOI: 10.1051/e3sconf/201910900099.

5. Nasonov A. A., Davydenko A. P. Mathematical modeling of the near-wellbore zone of a wellbore with a combined drilling scheme. Engineering journal of Don. 2022, no. 3 (87), pp. 114—123. [In Russ].

6. Antsiferov S. V., Sammal' A. S., Deev P. V. Stress–strain analysis of multi-layer lining of vertical shafts with regard to design deviations of cross-section forms. Mining sciences: fundamental and applied issues. 2017, vol. 4, no. 2, pp. 19—25. [In Russ].

7. Kharisov T. F., Antonov V. A. Lining stability during vertical shaft construction. Problems of Subsoil Use. 2014, no. 1 (1), pp. 65—69. [In Russ].

8. Kharisov T. F. Damage prevention in shaft lining in the sinking with lining technology of shaft construction. News of the Tula state university. Sciences of Earth. 2018, no. 4, pp. 264—274. [In Russ].

9. Pleshko M. S., Ankratenko A. N., Nasonov A. A., Isaev A. S. Geomechanical monitoring and stress—strain analysis of lining in ultra deep mine shafts. Eurasian Mining. 2023, no. 1, pp. 13—19. DOI: 10.17580/em.2023.01.03.

10. Hentrich N.-A., Calderon D. S., Bock S., Franz J. Limitations of standard analytical methods of shaft liner design. Ground Support 2019: Proceedings of the Ninth International Symposium on Ground Support in Mining and Underground Construction, Australian Centre for Geomechanics, Perth, 2019, pp. 445—458. DOI: 10.36487/ACG_rep/1925_31_Hentrich.

11. Walton G., Kim E., Sinha S., Sturgis G., Berberick D. Investigation of shaft stability and anisotropic deformation in a deep shaft in Idaho, United States. International Journal of Rock Mechanics and Mining Sciences. 2018, vol. 105, pp. 160—171. DOI: 10.1016/j.ijrmms.2018.03.017.

12. Bulychev N. S. Fotieva N. N. Strel'tsov E. V. Proektirovanie i raschet krepi kapital'nykh vyrabotok [Design and calculation of support for permanent workings], Moscow, Nedra, 1986, 288 p.

13. Bulychev N. S. Mekhanika podzemnykh sooruzheniy [Mechanics of underground constructions], Moscow, Nedra, 1994, 278 p.

14. Solov'ev V. A., Konstantinova S. A., Aptukov V. N. Okhrana gornykh vyrabotok v solyanykh porodakh. Teoriya i praktika [Protection of mine workings in salt rocks. Theory and practice], Novosibirsk, Nauka, 2017, 264 p.

15. Solov'ev V. A., Aptukov V. N., Vaulina I. B. Podderzhanie gornykh vyrabotok v porodakh solenosnoy tolshchi: Teoriya i praktika [Maintenance of mine workings in the rocks of the saltbearing strata: Theory and practice], Novosibirsk, Nauka, 2013, 412 p.

16. Morozov I. A., Pankov I. L., Toksarov V. N. Stability of underground openings in salt rock masses. MIAB. Mining Inf. Anal. Bull. 2021, no. 9, pp. 36—47. [In Russ]. DOI: 10.25018/0236_ 1493_2021_9_0_36.

17. Kazikaev D. M., Sergeev S. V. Features of the deformation of the lining of shafts and junctions in difficult mining and geological conditions. MIAB. Mining Inf. Anal. Bull. 2013, no. 3, pp. 26—32. [In Russ].

18. Problemy razrabotki mestorozhdeniy uglevodorodnykh i rudnykh poleznykh iskopaemykh: materialy XII Vserossiyskoy nauchno-tekhnicheskoy konferentsii [Problems of developing deposits of hydrocarbon and ore minerals: materials of the XII All-Russian Scientific and Technical Conference], Perm, Izd-vo PNIPU, 2019, 450 p.

19. Toksarov V. N., Morozov I. A., Beltyukov N. L., Udartsev A. A. Deformation of underground excavations under conditions of the Gremyachinsk potassium salt deposit. MIAB. Mining Inf. Anal. Bull. 2020, no. 7, pp. 113—124. [In Russ]. DOI: 10.25018/0236-1493-2020-7-0-113-124.

20. Pankratenko A. N., Mashin A. N., Nasonov A. A., Parinov D. S. Features of structural assessment of long life mine shafts. Gornyi Zhurnal. 2023, no. 1. [In Russ]. DOI: 10.17580/gzh.2023.01.03.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.