Effect exerted by tilt angle of broken layer of freezing ore on production losses in sublevel stoping under negative temperatures

The article presents studies into the influence exerted by tilt of a broken ore layer on the production losses due to ore freezing in sublevel stoping under negative temperatures in the permafrost zone. The effect of the broken ore layer tilt on the ore loss due to freezing was investigated in physical modeling of ore drawing on a special test bench, in a cryocell which reproduces negative temperature conditions at a deposit in Yakutia. The tests were carried out at the broken layer tilts of 90˚, 85˚, 80˚ and 75˚ and at different moisture contents. The test samples were prepared, treated, placed in the cell and drawn under negative temperatures. The experimental ore drawing from a single drawpoint lasted until the limit dilution of 50 % was reached in a sample dose. The loss was determined as the mass difference between the ore fill in the cell and the ore drawn from it. The experimental research has found out that the most complete extraction of ore in sublevel stoping under the temperature of minus 5˚ and at the moisture content of 1 % is achieved at the vertical ore–rock mass contact. The decrease in the ore–rock interface angle to 75 % results in the higher ore loss due to freezing. The obtained qualitative relations can be used to develop recommendations on enhancing sublevel stoping efficiency in the permafrost zone.

Keywords: underground mining, ore deposit, permafrost zone, sublevel caving, ore drawing, broken ore layer, freezing, loss.
For citation:

Zubkov V. P., Petrov D. N. Effect exerted by tilt angle of broken layer of freezing ore on production losses in sublevel stoping under negative temperatures. MIAB. Mining Inf. Anal. Bull. 2021;(12-1):85—94. [In Russ]. DOI: 10.25018/0236_1493_2021_121_0_85.

Acknowledgements:
Issue number: 12
Year: 2021
Page number: 85-94
ISBN: 0236-1493
UDK: 622.34:622.274.53
DOI: 10.25018/0236_1493_2021_121_0_85
Article receipt date: 18.07.2021
Date of review receipt: 08.11.2021
Date of the editorial board′s decision on the article′s publishing: 10.11.2021
About authors:

Zubkov V. P.1, Deputy Director for Science, Senior Researcher, Cand. Sci. (Eng.), zubkov @ igds.ysn.ru;
Petrov D. N.1, Head of the Laboratory, Cand. Sci. (Eng.), petrovdn74@mail.ru;
1 Chersky Mining Institute of the North, Siberian Branch, Russian Academy of Sciences, Yakutsk, Russia.

 

For contacts:
Bibliography:

1. Shekhar G, Gustafson A, Schunnesson H. Draw control strategy and resource efficiency in sublevel caving. State-of-the-art. Research report. Luleå University of Tecnology, Luleå 2017, 96 p.

2. Nordqvist A, Wimmer X. Holistic approach to study gravity flow at the Kiruna sublevel caving mine. In Seventh International Conference and Exhibition on Mass Mining (Mass Min 2016). Sydney: The Australian Institute of Mining and Metallurgy. pp. 401–414.

3. Savich I. N., Mustafin V. I. Prospects of application and substantiation of design solutions for level and sublevel discharge. MIAB. Mining Inf. Anal. Bull. 2015. Issue 1. pp. 419—429. [In Russ].

4. Zong-Xian Zhang. Failure of hanging roofs in sublevel caving by shock collision and stress superposition. Journal of Rock Mechanics and Geotechnical Engineering, 2016, № 8, pp. 886—895.

5. Yu K, Ren F, Chitombo G, Puscasu R, Kang L. Optimum sublevel height and drift spacing in sublevel cave mining based on random medium theory. Mining, Metallurgy & Exploration: An Official International Peer-reviewed Journal of the Society. 2020, №37(2), pp. 681—690.

6. Skawina B., Greberg J., Salama A., Gustafson A. The effects of orepass loss on loading, hauling, and dumping operations and production rates in a sublevel caving mine. Journal of the Southern African Institute of Mining and Metallurgy. April 2018, Vol. 118, pp 409—418.

7. Marysyuk V. P., Darbinyan T. P., Andreev A. A., Noskov V. A. Efficiency of modification of the copper–nickel sulfide ore mining system in the Oktyabrsky mine. ‹Gornyi zhurnal›, 2019, no. 11, pp. 19–23 DOI: 10.17580/gzh.2019.11.02

8. Shilyayev N. S., Boguslavsky E. I. Physical simulation of end ore drawing, Uspekhisovremennogo-estestvoznaniya. 2007, no. 4, pp. 17—20 [In Russ]

9. Romanko E. A. Metodika opredeleniya poter’ i razubozhivaniya rudy pri osvoenii zapasov podzemnoj geotekhnologiej sistemami razrabotki s obrusheniem rudy i vmeshchayushchih porod [Methodology for determining the loss and dilution of ore during the development of reserves by underground geotechnology by systems of mining with the caving of ore and enclosing rocks]. Youth and Science: Collection of materials of the VIII All-Russian Scientific and Technical Conference of Students, Postgraduates and Young Scientists, dedicated to 155 anniversary of the birth of K. E. Tsiolkovsky [Electronic resource]. Krasnoyarsk: Siberian Federal University, 2012. Access mode: http://conf.sfukras.ru/sites/mn2012/section09.html, free. [In Russ].

10. Volfson P. M. Podetazhnoe obrushenie [Sublevel caving], Moscow, Nedra, 1968, 183 p. [In Russ].

11. Zenko D. K., Mustafin V. I., Romanov V. A., Suhov D. I., Smirnov I. A. Zakonomernosti dvizheniya rudy pri vypuske pod obrushennymi porodami [Regularities of ore movement during draw under brocken rocks]. Materialy 10 mezhdunarodnoj nauchnoj shkoly Problem osvoeniya nedr v XXI veke glazami molodyh. Moskow, Izdatelstvo-IPKON RAN, 2013, no. 1 pp. 237—240 [In Russ]

12. Zubkov V. P., Petrov D. N. Influence of intensity of ore drawing on losses in sublevel caving in permafrost zone. MIAB. Mining Inf. Anal. Bull. 2019. no. 4. pp. 5—13 [In Russ].

13. Bakhmutov V. M. Tekhnologicheskij reglament dlya razrabotki tekhnicheskogo proekta Nezhdaninskogo GOKa v YAkutskoj ASSR po tekhnologii podzemnyh gornyh rabot [Technological regulations for the development of a technical project for Nezhdaninskiy GOK in the Yakut ASSR on the technology of underground mining] (Chita: CHF VNIPIGortsvetmet, 1986) [In Russ].

14. Artemonov S. V. [and others] Razrabotka effektivnoj tekhnologii otrabotki rudnyh tel Nezhdaninskogo mestorozhdeniya: otchet o NIR [Development of an effective technology for mining ore bodies at the Nezhdaninskoe deposit: Research report] (GIPROTSVETMET; Chita, 1989) [In Russ].

15. Golik V. I., Belodedov A. A., Logachev A. V., Shurygin D. N. Improvement of parameters of production of ores at the sublevel caving with face ore drawing. News of the Tula State University. Sciences of Earth. 2018. no. 1. pp. 150–159. [In Russ].

16. Shekhovtsov V. S. Osnovy nauchnyh issledovanij v gornom dele [Fundamentals of scientific research in mining]: textbook. SibSIU. Novokuznetsk, 2006. 136 p. [In Rus].

17. Bashkov V. I., Kopitov A. I. Calculation of parameters and constructive design options of developing sublevel caving with mechanical release of ore. Bulletin of the Kuzbass State Technical University. 2015. no. 2. pp. 75—77 [In Russ].

18. Imenitov V. R., Kovalev I. A., Uralov V. S. Modelirovanie obrusheniya i vypuska rudy [Simulation of the caving and ore drawing]. Moscow, MGI, 1961. [In Russ].

19. Savich I. N., Zenko D. K. Substantiation of the parameters of the development system with a sub-storey collapse at the end release of ore. MIAB. Mining Inf. Anal. Bull. 2004, no. 4, pp. 219—221. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.