Capabilities of sonochemistry in flotation of ore minerals

Authors: Burov V. E.

A promising method of ultrasonic treatment is theoretically analyzed with regard to the improvement of solid mineral flotation efficiency. The theoretical framework of sonochemistry (acoustochemistry), and the effects induced in ultrasonic treatment of different media during mineral flotation are analyzed, including transient and steady-state cavitation, and the effect of acoustic emission force. The factors of the sonochemistry influence on flotation efficiency are explained, and these factors are primarily connected with ultrasonic cavitation and with acoustic emission force. The article identifies two main research areas addressed by the world scientific communities in the last two decades: ultrasound treatment of pulp or flotation agents before flotation, including the processes of emulsification or dispersion of the agents, removal of oxide films from particle surface, snf desliming in the supersonic field; ultrasound treatment during flotation, which exerts an influence on the size of air bubbles, separation of barren rock from high-value material, frothing, etc. Regarding application of ultrasound at flotation factories, the most promising approach is the ultrasound treatment of ore pulp, which promotes removal of clay–salt slimes and oxide films from the surface of mineral particles, and the preliminary sonochemical treatment of floatation agents, which changes many physicochemical characteristics of the agents and improves flotation efficiency thereby.

Keywords: flotation, ultrasound treatment, flotation agents, cavitation, flotation efficiency, acoustic emission, dispersion, desliming, pulp.
For citation:

Burov V. E. Capabilities of sonochemistry in flotation of ore minerals. MIAB. Mining Inf. Anal. Bull. 2024;(1):36-51. [In Russ]. DOI: 10.25018/0236_1493_2024_1_0_36.

Acknowledgements:
Issue number: 1
Year: 2024
Page number: 36-51
ISBN: 0236-1493
UDK: 622.765.4 : 621.9.048.6
DOI: 10.25018/0236_1493_2024_1_0_36
Article receipt date: 17.03.2023
Date of review receipt: 06.07.2023
Date of the editorial board′s decision on the article′s publishing: 10.12.2023
About authors:

V.E. Burov, Graduate Student, Perm National Research Polytechnic University, 614990, Perm, Russia, e-mail: vladimire.burov@gmail.com, ORCID ID: 0000-0003-0369-0492.

 

For contacts:
Bibliography:

1. Abramov A. A. Development paths of the theory of beneficiation processes and creation of innovative technologies for integrated use of raw materials. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopaemykh. 2012, no. 1, pp. 165—178. [In Russ].

2. Liu W., Moran C. J., Vink S. A review of the effect of water quality on flotation. Minerals Engineering. 2013, vol. 53, pp. 91—100. DOI: 10.1016/j.mineng.2013.07.011.

3. Aleksandrovich Kh. M., Mozheyko F. F., Korshuk E. F., Markin A. D. Fizikokhimiya selektivnoy flotatsii kaliynykh soley [Physicochemistry of selective flotation of potassium salts], Minsk, Nauka i tekhnika, 1983, 272 p.

4. Peleka E. N., Gallois G. P., Matis K. A. A perspective on flotation: a review. Journal of Chemical Technology & Biotechnology. 2017, vol. 93, pp. 615—623. DOI: 10.1002/jctb.5486.

5. Chen Y., Truong N. T., Bu X., Xie G. A review of effects and applications of ultrasound in mineral flotation. Ultrasonics Sonochemistry. 2020, vol. 60, article 104739. DOI: 10.1016/j. ultsonch.2019.104739.

6. Mason T. J., Riera E., Vercet A., Lopez-Buesa P., Sun D. Application of ultrasound. Emerging technologies for food processing. Ch. 13. London, Academic Press, 2005, pp. 323—351. DOI: 10.1016/B978-0-12-676757-5.X5000-2.

7. Fedyushko Yu. M., Fedyushko M. P. The ecological nature of the energy of ultrasonic waves in technological processes. Vestnik agrarnoi nauki Dona. 2013, no. 4(24), pp. 34—39. [In Russ].

8. Videla A. R., Morales R., Saint-Jean T., Gaete L., Vargas Y., Miller J. D. Ultrasound treatment on tailings to enhance copper flotation recovery. Minerals Engineering. 2016, vol. 99, pp. 89—95. DOI: 10.1016/j.mineng.2016.09.019.

9. Filippov L. O., Filippova I. V., Barres O., Lyubimova T. P., Fattalov O. O. Intensification of the flotation separation of potash ore using ultrasound treatment. Minerals Engineering. 2021, vol. 171, article 107092. DOI: 10.1016/j.mineng.2021.107092.

10. Gungoren C., Baktarhan Y., Demir I., Ozkan S. Enhancement of galena-potassium ethyl xanthate flotation system by low power ultrasound. Transactions of Nonferrous Metals Society of China. 2020, vol. 30, no. 4, pp. 1102—1110. DOI: 10.1016/S1003-6326(20)65281-5.

11. Khmelev V. N., Shalunov A. V., Khmelev S. S., Tsyganok S. N. Ul'trazvuk. Apparaty i tekhnologii [Ultrasonics. Devices and technologies], Barnaul, AltGTU, 2015, 687 p.

12. Adewuyi Y. G. Sonochemistry: Environmental science and engineering applications. Industrial & Engineering Chemistry Research. 2001, vol. 40, pp. 4681—4715. DOI: 10.1021/ ie010096l.

13. Mørch K. A. Reflections on cavitation nuclei in water. Physics of Fluids. American Institute of Physics. 2007, vol. 19, no. 7, article 072104. DOI: 10.1063/1.2747210.

14. Kugaevskaya A. A., Lyubimova T. P., Rybkin K. A., Fattalov O. O., Kozlov M. V. Experimental study of the formation of steam-gas bubbles in water and salt solutions under the influence of ultrasound. Permskie gidrodinamicheskie nauchnye chteniya: Materialy VII Vserossiyskoy konferentsii s mezhdunarodnym uchastiem, posvyashchennoy pamyati professorov G.Z. Gershuni, E.M. Zhukhovitskogo i D.V. Lyubimova [Perm Hydrodynamic Scientific Readings. Materials of 7th All-Russian Conference with International Participation in memory of Professors G.Z. Gersuni, E.M. Zhukhovitsky and D.V. Lyubimov], Perm, PGNIU, 2020, pp. 253—256. [In Russ].

15. Lord Rayleigh O. M. On the pressure developed in a liquid during the collapse of a spherical cavity. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 1917, vol. 34 (200), pp. 94—98. DOI: 10.1080/14786440808635681.

16. Plesset M. S. The dynamics of cavitation bubbles. Journal of Applied Mechanics. 2021, vol. 16, no. 3, pp. 277—282. DOI: 10.1115/1.4009975.

17. Neppiras E. A., Noltingk B. E. Cavitation produced by ultrasonics: Theoretical conditions for the onset of cavitation. Proceedings of the Physical Society. Section B. 1951, vol. 64, no. 12, pp. 1032—1038. DOI: 10.1088/0370-1301/64/12/302.

18. Margulis M. A., Margulis I. M. Dynamics of a bubble ensemble in a cavitation field. Zhurnal fizicheskoy khimii. 2007, no. 12 (81), pp. 2290—2295. [In Russ].

19. Yur G. S., Pinyasov S. V. Numerical study of cavitation process in liquid droplet. Marine intelligent technologies. 2019, no. 1—3, pp. 53—56. [In Russ].

20. Neppiras E. A. Acoustic cavitation thresholds and cyclic processes. Ultrasonics. 1980, vol. 18, no. 5, pp. 201—209. DOI: 10.1016/0041-624X(80)90120-1.

21. Mikhailova N. V., Smirnov I. V., Sharipova A., Slesarenko V. Calculation of the dependence of the sound-cavitation effect on the ultrasound frequency based on the cavitation threshold criterion. Problems of strength and plasticity. 2020, vol. 82, no. 1, pp. 64—74. [In Russ]. DOI: 10.32326/1814-9146-2020-82-1-64-74.

22. Yasui K., Lee J., Kozuka T., Towata A., Iida Ya. The range of ambient radius for an active bubble in sonoluminescence and sonochemical reactions. The Journal of Chemical Physics. 2008, vol. 128, no. 18, article 184705. DOI: 10.1063/1.2919119.

23. Young F. R. Cavitation, London, World Scientific, 1999, 444 p.

24. Leighton T. G., Walton A. J., Pickworth M. J. W. Primary Bjerknes forces. European Journal of Physics. 1990, vol. 11, no. 1. DOI: 10.1088/0143-0807/11/1/009.

25. Trujillo F. J., Juliano P., Barbosa-Cánovas G., Knoerzer K. Separation of suspensions and emulsions via ultrasonic standing waves. A review. Ultrasonics Sonochemistry. 2014, vol. 21, no. 6, pp. 2151—2164. DOI: 10.1016/j.ultsonch.2014.02.016.

26. Vakhrushev V. V., Rupcheva V. A., Poylov V. Z., Kosvintsev O. K. Desliming of sylvinite ore by ultrasonic treatment. Inzhenernyy vestnik Dona. 2012, no. 4, pp. 1369. [In Russ].

27. Herbert E., Balibar S., Caupin F. Cavitation pressure in water. Physical Review E. 2006, vol. 74, no. 4, article 041603. DOI: 10.1103/PhysRevE.74.041603.

28. Barma S. D., Sathish R., Baskey P. K., Biswal S. K. Chemical beneficiation of high-ash Indian noncoking coal by alkali leaching under low-frequency ultrasonication. Energy Fuels. 2018, vol. 32, no. 2, pp. 1309—1319. DOI: 10.1021/acs.energyfuels.7b03291.

29. Barma S. D. Ultrasonic-assisted coal beneficiation. A review. Ultrasonics Sonochemistry. 2019, vol. 50, pp. 15—35. DOI: 10.1016/j.ultsonch.2018.08.016.

30. Muramatsu H., Saito T. The relationship between bubble motion and particle flocculation pattern under 20-kHz-ultrasound radiation in water. Chemical Engineering Science. 2017, vol. 170, pp. 195—203. DOI: 10.1016/j.ces.2017.03.040.

31. Ozkan S. G. Effects of simultaneous ultrasonic treatment on flotation of hard coal slimes. Fuel. 2012, vol. 93, pp. 576—580. DOI: 10.1016/j.fuel.2011.10.032.

32. Oliveira H., Azevedo A., Rubio J. Nanobubbles generation in a high-rate hydrodynamic cavitation tube. Minerals Engineering. 2018, vol. 116, pp. 32—34. DOI: 10.1016/j.mineng.2017.10.020.

33. Bruus H. Acoustofluidics 1: Governing equations in microfluidics. Lab on a Chip. 2011, vol. 11, no. 22, pp. 3742—3751. DOI: 10.1039/C1LC20658C.

34. Luo X., Cao J., Yin H., Yan H., He L. Droplets banding characteristics of water-in-oil emulsion under ultrasonic standing waves. Ultrasonics Sonochemistry. 2018, vol. 41, pp. 319—326. DOI: 10.1016/j.ultsonch.2017.09.055.

35. Ambedkar B., Nagarajan R., Jayanti S. Investigation of high-frequency, high-intensity ultrasonics for size reduction and washing of coal in aqueous medium. Industrial and Engineering Chemistry Research. 2011, vol. 50, no. 23, pp. 13210—13219. DOI: 10.1021/ie200222w.

36. Altun N. E., Hwang J. Y., Hicyilmaz C. Enhancement of flotation performance of oil shale cleaning by ultrasonic treatment. International Journal of Mineral Processing. 2009, vol. 91, no. 1, pp. 1—13. DOI: 10.1016/j.minpro.2008.10.003.

37. Wang Y., Peng Y., Nicholson T., Lauten R. A. The different effects of bentonite and kaolin on copper flotation. Applied Clay Science. 2015, vol. 114, pp. 48—52. DOI: 10.1016/j. clay.2015.05.008.

38. Yu Y., Ma L., Cao M., Liu Q. Slime coatings in froth flotation. A review. Minerals Engineering. 2017, vol. 114, pp. 26—36. DOI: 10.1016/j.mineng.2017.09.002.

39. Vakhrushev V. V., Poilov V. Z., Kosvintsev O. K. Removal of sodium chloride from KCl flotation concentrate by ultrasonic treatment. Bulletin of the Tomsk Polytechnic University. 2013, vol. 322, no. 3, pp. 15—18. [In Russ].

40. Bandini P., Prestidge C. A., Ralston J. Colloidal iron oxide slime coatings and galena particle flotation. Minerals Engineering. 2001, vol. 14, no. 5, pp. 487—497. DOI: 10.1016/S08926875(01)00036-X.

41. Xia W., Yang J., Liang C. A short review of improvement in flotation of low rank/oxidized coals by pretreatments. Powder Technology. 2013, vol. 237, pp. 1—8. DOI: 10.1016/j. powtec.2013.01.017.

42. Xia W., Xie G., Liang C., Yang J. Flotation behavior of different size fractions of fresh and oxidized coals. Powder Technology. 2014, vol. 267, pp. 80—85. DOI: 10.1016/j.powtec.2014.07.017.

43. Misra M., Raichur A. M., Lan A. P. Improved flotation of arsenopyrite by ultrasonic pretreatment. Mining, Metallurgy & Exploration. 2003, vol. 20, no. 2, pp. 93—97. DOI: 10.1007/ BF03403138.

44. Cao Q., Cheng J., Feng Q., Wen S., Luo B. Surface cleaning and oxidative effects of ultrasonication on the flotation of oxidized pyrite. Powder Technology. 2017, vol. 311, pp. 390—397. DOI: 10.1016/j.powtec.2017.01.069.

45. Xu M., Xing Y., Gui X., Cao Y., Wang D., Wang L. Effect of ultrasonic pretreatment on oxidized coal flotation. Energy Fuels. 2017, vol. 31, no. 12, pp. 14367—14373. DOI: 10.1021/ acs.energyfuels.7b02115.

46. Miettinen T., Ralston J., Fornasiero D. The limits of fine particle flotation. Minerals Engineering. 2010, vol. 23, no. 5, pp. 420—437. DOI: 10.1016/j.mineng.2009.12.006.

47. Peng Y., Mao Y., Xia W., Li Y. Ultrasonic flotation cleaning of high-ash lignite and its mechanism. Fuel. 2018, vol. 220, pp. 558—566. DOI: 10.1016/j.fuel.2018.02.049.

48. Filippov L. O., Filippova I. V., Barres O., Lyubimova T. P., Fattalov O. O. Intensification of the flotation separation of potash ore using ultrasound treatment. Minerals Engineering. 2021, vol. 171, article 107092. DOI: 10.1016/j.mineng.2021.107092.

49. Najafian L., Ghodsvali A., Haddad Khodaparast M. H., Diosady L. L. Aqueous extraction of virgin olive oil using industrial enzymes. Food Research International. 2009, vol. 42, no. 1, pp. 171—175. DOI: 10.1016/j.foodres.2008.10.002.

50. Chen Y., Xie G., Chang J., Grundy J., Liu Q. A study of coal aggregation by standingwave ultrasound. Fuel. 2019, vol. 248, pp. 38—46. DOI: 10.1016/j.fuel.2019.03.030.

51. Poilov V. Z., Burov V. E., Gallyamov A. N., Fedotova O. A. Sonochemical activation of amine hydrochloric acid solution used as a collector in sylvinite ore flotation. Obogashchenie Rud. 2021, no. 5, pp. 15—26. [In Russ]. DOI: 10.17580/or.2021.05.04.

52. Burov V. E., Poilov V. Z., Sazhina M. M., Huang Z. Effect of ultrasound on reagent compositions foaming properties used in mineral flotation. Chemchemtech. 2022, vol. 65, no. 9, pp. 81—89. DOI: 10.6060/ivkkt.20226509.6624.

53. Burov V. E., Poilov V. Z., Huang Z., Chernyshev A. V., Kuzminykh K. G. Effect of sonochemical pretreatment of slurry depressors on sylvin flotation performance. Mining Science and Technology (Russia). 2022, vol. 7, no. 4, pp. 298—309. [In Russ]. DOI: 0.17073/2500-0632-2022-08-09.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.