Selection of the elastic wave source in the problem of monitoring the state of a carbonate massif using the seismic method

Studying the state of coal-rock masses during their mechanized mining is an important task to ensure safety and efficiency in the extraction of mineral resources. Seismic probing is one of the non-destructive methods for monitoring the state of a rock mass, which is based on registering elastic waves that arise when technological equipment acts on a rock mass. To effectively use this method for monitoring, it is necessary to choose an optimal source of elastic waves taking into account several conditions, including maximum energy efficiency and technological feasibility. The selection of the source of elastic waves is proposed to be performed based on a set of criteria, the deviation from which serves as a condition for classifying the vibration source as interference. This article describes a method for selecting a source of elastic waves in monitoring the state of coal-rock masses using the seismic method. The article is based on an experiment that generated data on signal spectra, amplitude changes, and source location. Based on selected optimality criteria, a reasonable choice was made for the source of elastic waves for further use in monitoring the rock mass. The proposed method can be used in selecting and evaluating the characteristics of sources of elastic waves in preparatory workings of mines and mines that use mechanized mining techniques.

Keywords: Seismic probing, coal mine, source of elastic waves, rock mass monitoring.
For citation:

Valiev N. G., Shnaider I. V., Abdrakhmanov M. I., Samsonov V. I., Zudilin A. E. Selection of the elastic wave source in the problem of monitoring the state of a carbonate massif using the seismic method. MIAB. Mining Inf. Anal. Bull. 2024;(1-1):179—192. [In Russ]. DOI: 10. 25018/0236_1493_2024_011_0_179.

Acknowledgements:
Issue number: 1
Year: 2024
Page number: 179-192
ISBN: 0236-1493
UDK: 622.831.3
DOI: 10.25018/0236_1493_2024_011_0_179
Article receipt date: 15.05.2023
Date of review receipt: 04.10.2023
Date of the editorial board′s decision on the article′s publishing: 10.12.2023
About authors:

Valiev N. G.1, Dr. Sci. (Eng.), Professor, Vice-Rector, Head of Chair, e-mail: niyaz. valiev@m.ursmu.ru, ORCID ID: 0000-0002-5556-2217;
Shnaider I. V.1, Cand. Sci. (Eng.), e-mail: ivan-shnajder@yandex.ru, ORCID: 0000-00029808-4219;
Abdrakhmanov M. I.1, Cand. Sci. (Eng.), Associate Professor, e-mail: marat-ab@mail.ru, ORCID: 0000-0002-0391-6204;
Samsonov V. I.1, Senior Lecturer, ORCID: 0000-0001-8346-3606;
Zudilin A. E.1, Cand. Sci. (Geol. Mineral.), Associate Professor, ORCID: 0000-0002-61135043;
1 Ural State Mining University, Yekaterinburg, Russia, 620144, Yekaterinburg, Kuybysheva St., 30.

 

For contacts:

Shnaider I. V., e-mail: ivan-shnajder@yandex.ru.

Bibliography:

1. Zakharov V. N., Shlyapin A. V., Trofimov V. A., Filippov Yu. A. Change in stress– strain behavior of coal-rock mass during coal mining. MIAB. Mining Inf. Anal. Bull. 2020, no. 9, pp. 5–24. [In Russ]. DOI: 10.25018/0236-1493-2020-9-0−5-24.

2. Sosnovskaya E. L., Avdeev A. N. Prediction of the potential rockburst hazard of the lower levels of the Kholbinsky mine. Izvestiya Vuzov. Mining Journal. 2019, no. 8, pp. 30–37. [In Russ]. DOI: 10.21440/0536-1028-2019-8-30−37.

3. Abdrakhmanov M. I., Lapin S. E., Shnaider I. V. Creation of a digital model of extraction pillar by the reflection seismic surveying method. MIAB. Mining Inf. Anal. Bull. 2022, no. 11−2, pp. 148–158. [In Russ]. DOI: 10.25018/0236_1493_2022_112_0_148.

4. Egorov A. P., Ryzhov V. A. On the issue of systematization of geophysical studies of the geomechanical state of the rock mass and the earth’s surface for operational control of safe mining operations at coal mines. Ugol’. 2019, no. 10, pp. 29−33. [In Russ].

5. Antsiferov A. V., Glukhov A. A., Antsiferov V. A. Mine seismic prediction of tectonic faults by reflected waves using the method of location. MIAB. Mining Inf. Anal. Bull. 2020, no. 6, pp. 131–139. [In Russ]. DOI: 10.25018/0236-1493-2020-6-0−131−139.

6. Oboué Y. A. S. I., Chen W., Saad O. M. et al. Adaptive Damped Rank-Reduction Method for Random Noise Attenuation of Three-Dimensional Seismic Data. Surv Geophys. 2023, vol. 44, pp. 847–875. https://doi.org/10.1007/s10712-022-09756-7.

7. Arrowsmith S. J., Trugman D. T., MacCarthy J., Bergen K. J., Lumley D., Magnani M. B. Big Data Seismology. Reviews of Geophysics. 2022, vol. 60, issue 2. DOI: 10.1029/2021RG000769.

8. Sokolov S. V., Saltyakov E. A., Kormin A. N. Comprehensive geophysical studies of the state of the coal-bearing massif in the conditions of the Kuzbass. Vestnik Kuzbass State Technical University. 2017, no. 2, pp. 66−70. [In Russ].

9. Pisetckiy V. B., Robert Huang, Patrushev Yu. V., Zudilin A. E., Shnayder I. V., Shirobokov M. P. Results of tests of seismic systems for monitoring the stability of the rock mass in the construction of highways in China. Mining Industry. 2017, no. 2 (06), p. 108. [In Russ].

10. Romanov V. V., Malsky K. S., Poserenin A. I., Karinsky A. D. Estimation of rock mass strength and water content by geophysical methods. Mining Journal. 2018, no. 11, pp. 61–64. [In Russ]. DOI: 10.17580/gzh.2018.11.11.

11. Liu W., Liu Y., Li S. et al. A Review of Variational Mode Decomposition in Seismic Data Analysis. Surv Geophys. 2023, vol. 44, pp. 323–355. https://doi.org/10.1007/ s10712−022−09742-z.

12. Razumov E. E., Prostov S. M. Basic principles of building a geomonitoring seismic system. Mining Journal. 2021, no. 1, pp. 8−12. [In Russ].

13. Rasskazov M. I., Gladyr A. V., Tereshkin A. A., & Tsoi D. I. Seismoacoustic rock pressure control system at the Mir underground mine. Problems of Subsoil Use. 2019, no. 2 (21), pp. 56−61. [In Russ].

14. Astrakhantsev Yu. G., Bazhenova E. A., Beloglazova N. A., Vdovin A. G., Glukhikh I. I., Ivanchenko V. S., Khachai O. A. Comprehensive geophysical studies of rock massifs in their natural occurrence. Yekaterinburg, Ural Branch of the Russian Academy of Sciences, 2018, 105 p. [In Russ].

15. Wang Z., Sun C. & Wu D. Near-surface Site Characterization Based on Joint Iterative Analysis of First-arrival and Surface-wave Data. Surv Geophys. 2023, no. 44, pp. 357–386. https://doi.org/10.1007/s10712-022-09747-8.

16. Wu B., Hu H. & Zhou H. W. Convolutional Neural Network-Assisted LeastSquares Migration. Surv Geophys. 2023, vol. 44(6), pp. 1–18. https://doi.org/10.1007/ s10712−023−09777-w.

17. Verdon J. P., Kendall J. M., Butcher A., Luckett R., Baptie B. J. Seismicity induced by longwall coal mining at the Thoresby Colliery, Nottinghamshire, UK. Geophysical Journal International. 2018, vol. 212, no. 2, pp. 942−954.

18. Kharisov T. F., Melnik V. V., Zamyatin A. L. Geophysical exploration studies in an underground mine. Izvestiya Vuzov. Mining Journal. 2020, no. 7, pp. 49–55. [In Russ]. DOI: 10.21440/0536-1028-2020-7-49−55.

19. Davydov V. A. Spectral analysis of microseismic sounding data. Geophysics. 2015, no. 1, pp. 72–77. [In Russ].

20. Sharapov I. R., Feofilov S. A. Ground passive microseismic monitoring in the study, development and operation of subsoil in the oil and gas and mining industries. Pribory i sistemy razvedochnoy geofiziki. 2021, no. 3, pp. 10−19. [In Russ].

Подписка на рассылку

Подпишитесь на рассылку, чтобы получать важную информацию для авторов и рецензентов.