Optimizing geometry of capacity units for reactive power compensation in power supply systems in extraction areas in mines

This study aims to describe approaches to determination of capacity, stages, number and locations of mine capacitor units in underground power supply systems in extraction areas in coal mines using simulation modeling and optimization at the stages of power supply system engineering and operation. The article offers a capacitor unit characterization algorithm and application recommendations. The proposed approach was tested by means of simulation modeling of a power supply system in an extraction area of a coal mine in the Kemerovo Region using the power supply system analysis software DigSILENT PowerFactory. The optimization methods involved in the set problem solving are compared. The research findings prove that: the highest economic effect is achievable at reactive power compensation at the engineering stage of power supply systems for extraction areas; the use of the proposed approach allows higher economic effect of reactive power compensation by 16% as compared with the capacitor unit characterization methods without simulation modeling.

Keywords: reactive power compensation, optimization, energy efficiency, simulation modeling, coal mine, PowerFactory, capacitor unit, power supply system.
For citation:

Voronin V. A., Nepsha F. S. Optimizing geometry of capacity units for reactive power compensation in power supply systems in extraction areas in mines. MIAB. Mining Inf. Anal. Bull. 2022;(12):94-108. [In Russ]. DOI: 10.25018/0236_1493_2022_12_0_94.

Acknowledgements:

The study was supported by the Ministry of Science and Higher Education of the Russian Federation, State Contract No. 075-03-2021 138/3.

Issue number: 12
Year: 2022
Page number: 94-108
ISBN: 0236-1493
UDK: 621.316
DOI: 10.25018/0236_1493_2022_12_0_94
Article receipt date: 11.06.2022
Date of review receipt: 10.08.2022
Date of the editorial board′s decision on the article′s publishing: 10.11.2022
About authors:

V.A. Voronin1, Researcher, e-mail: voroninva@kuzstu.ru, ORCID ID: 0000-0002-7242-9100,
F.S. Nepsha1, Cand. Sci. (Eng.), Senior Researcher, e-mail: nepshafs@kuzstu.ru, ORCID ID: 0000-0002-7468-2548,
1 T.F. Gorbachev Kuzbass State Technical University, 650000, Kemerovo, Russia.

 

For contacts:

V.A. Voronin, e-mail: voroninva@kuzstu.ru.

Bibliography:

1. Lyalin A. M., Zozulya A. V., Eremina T. N., Zozulya P. V. Current trends in the development of the coal industry, taking into account the impact of the pandemic. Ugol'. 2021, no. 5, pp. 62—65. [In Russ]. DOI: 10.18796/0041-5790-2021-5-62-65.

2. Novoselov S. V., Oganesyan A. S. Problems, risks and forecasts of the development of the coal industry of the Kemerovo region for the period up to 2035. Ugol'. 2021, no. 2, pp. 38—41. [In Russ]. DOI: 10.18796/0041-5790-2021-2-38-41.

3. Palianova N. A. Improvement of regulatory and legal framework to ensure ecologically and economically sustainable development in the coal mining industry in Russia. MIAB. Mining Inf. Anal. Bull. 2018, no. 3, pp. 168—175. [In Russ]. DOI: 10.25018/0236-1493-2018-3-0-168-175.

4. Diluiso F., Walk P., Manych N., Cerutti N., Chipiga V. Coal transitions—part 1: a systematic map and review of case study learnings from regional, national, and local coal phaseout experiences. Environmental Research Letters. 2021, vol. 16, no. 11, article 113003. DOI: 10.1088/1748-9326/ac1b58.

5. Belyak V. L., Plashchanskiy L. A. Increasing the voltage of district networks as a way to increase the efficiency of the use of mining machines in high-loaded faces of coal mines. MIAB. Mining Inf. Anal. Bull. 2007, no. 9, pp. 286—290. [In Russ].

6. Kubrin S. S., Mosievsky A. A., Zakorshmenny I. M., Reshetnyak S. N., Maksimenko Yu. M. Ways to improve the energy efficiency of underground electric networks of high-performance coal mines. Ugol'. 2022, no. 2(1151), pp. 4—9. [In Russ]. DOI: 10.18796/0041-5790-2022-2-4-9.

7. Kopylov K. N., Kubrin S. S., Zakorshmenniy I. M., Reshetniak S. N. Reserves of increase of efficiency of coal extraction sections of coal mines. Ugol'. 2019, no. 3(1116), pp. 46—49. [In Russ]. DOI: 10.18796/0041-5790-2019-3-46-49.

8. Voronin V. A., Nepsha F. S. Optimal sizing and placing of condensers under harsh electric loads of coal mines excavation areas. Mining Equipment and Electromechanics. 2022, no. 1, pp. 61—68. [In Russ]. DOI: 10.26730/1816-4528-2022-1-61-68.

9. Soma G. G. Optimal sizing and placement of capacitor banks in distribution networks using a genetic algorithm. Electricity. 2021, vol. 2, no. 2, pp. 187—204. DOI: 10.3390/electricity2020012.

10. Kaushik E., Prakash V., Mahela O. P. Optimal capacitor placement in transmission network using grid oriented genetic algorithm for loss reduction and flexibility improvement: Indian scenario. International Conference on Computer Communication and Informatics (ICCCI 2022). 2022, pp. 1—6. DOI: 10.1109/ICCCI54379.2022.9740840.

11. Sattianadan D., Sudhkaran M., Vijayakumar K., Vidyasagar S. Optimal placement of capacitor in radial distribution system using PSO. International Conference on Sustainable Energy and Intelligent Systems (SEISCON 2011). 2011, pp. 326—331. DOI: 10.1049/cp.2011.0383.

12. Abass A. Z., Pavlyuchenko D. A., Hussain Z. S. Methods comparison for optimal capacitor placement in distribution system. International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon). 2020, pp. 1—6. DOI: 10.1109/FarEastCon50210.2020.9271381.

13. Tolba M. A. Kh. Razvitie metodov optimizatsii razmeshcheniya kompensiruyushchikh ustroystv i vozobnovlyaemoy raspredelennoy generatsii v radial'nykh elektricheskikh setyakh [Development of methods for optimizing the placement of compensating devices and renewable distributed generation in radial electric networks], Candidate’s thesis, Moscow, NIU MEI, 2018, 20 p.

14. Voronin V. A., Nepsha F. S. Simulation of the electric drive of the shearer to assess the energy efficiency indicators of the power supply system. Journal of Mining Institute. 2020, vol. 246, pp. 633—639. [In Russ]. DOI: 10.31897/PMI.2020.6.5.

15. Voronin V. A., Nepsha F. S. Modelling and simulation of scraper face conveyor electric drive. Ural Smart Energy Conference (USEC 2020). 2020, pp. 63—67. DOI: 10.1109/ USEC50097.2020.9281202.

16. Voronin V. A., Nepsha F. S., Varnavskiy S. A. Development of an algorithm for choosing the optimal configuration of a stepped capacitor unit. Energostart. Materialy IV Vserossiyskoy molodezhnoy nauchno-prakticheskoy konferentsii [Energostart. Materials of the IV Russian Youth Scientific and Practical Conference], Kemerovo, KuzGTU, 2021. [In Russ].

17. Gubko A. A., Gubko E. A. Elektrooborudovanie i elektrosnabzhenie gornykh predpriyatiy [Electrical equipment and power supply of mining enterprises], Moscow, Akademizdat, 2017, 530 p.

18. Puchkov L. A., Pivnyak G. G. Elektrifikatsiya gornogo proizvodstva. T. 2 [Electrification of mining production, vol. 2], Moscow, Izd-vo «Gornaya kniga», 2007, 595 p.

19. Blank J., Deb K. Pymoo: multi-objective optimization in Python. IEEE Access. 2020, vol. 8, pp. 89497—89509. DOI: 10.1109/ACCESS.2020.2990567.

20. Sopov E. A., Aplesnin S. S. Self-configuring ensemble of genetic algorithms for solving multimodal optimization problems. The Siberian Aerospace Journal. 2015, vol. 16, no. 4, pp. 833—841. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.