Selection of the main dimensions of the electromagnetic impact machine with a through axial channel

Electromagnetic impact machines with through axial channels used for sampling and transporting samples of rock and building materials and providing immersion in the ground of long longitudinally unstable rods expand the possibilities of working in the mining and construction industries. The paper considers the influence of the dimensions of the axial channel of an impact electromagnetic machine on the existing range of extreme ratios of its main geometric dimensions that satisfy the criterion of the minimum mass of the volume of active materials. The studies are carried out using the numerical calculation of the magnetic field by the finite element method using the FEMM (Finite Element Method Magnetics) software package. The results of the numerical calculation of the magnetic field in the active volume of an electromagnetic machine are presented in the form of graphical dependencies. Their analysis makes it possible to obtain the recommendations on the value of the ratios of the main geometric dimensions. The search for the extreme values of the ratios of the main dimensions is carried out by the method of rationalized enumeration using polynomial regression. The ranges of optimal ratios of the geometrical dimensions of an electromagnetic machine depending on the ratio between the through channel and hollow striker diameters are obtained with respect to minimum volume and mass of active materials. The method of preliminary calculation of the main geometrical dimensions of an electromagnetic machine with the through axial channel satisfying the criterion of minimum volume of active materials is proposed. The recommended relations of the main geometrical dimensions give possibility to reduce the consumption of the active materials of single-coil impact electromagnetic machines with the through channels saving their operating characteristics.

Keywords: impact electromagnetic machine, impact unit, through axial channel, efficiency indicator, volume of active materials, useful work, optimal dimensions, numerical calculation, magnetic field.
For citation:

Neyman V. Yu., Neyman L. A. Selection of the main dimensions of the electromagnetic impact machine with a through axial channel. MIAB. Mining Inf. Anal. Bull. 2023;(10-1):38—51. [In Russ]. DOI: 10.25018/0236_1493_2023_101_0_38.

Issue number: 10
Year: 2023
Page number: 38-51
ISBN: 0236-1493
UDK: 621.313.282:621.928.235
DOI: 10.25018/0236_1493_2023_101_0_38
Article receipt date: 18.04.2023
Date of review receipt: 05.06.2023
Date of the editorial board′s decision on the article′s publishing: 10.10.2023
About authors:

Neyman V. Yu., Dr. Sci. (Eng.), Head of the Department,, Novosibirsk State Technical University, 630073, Novosibirsk, Karl Marx Avenue, 20, Russia, e-mail:
Neyman L. A., Dr. Sci. (Eng.), Professor,, Novosibirsk State Technical University, 630073, Novosibirsk, Karl Marx Avenue, 20, Russia, e-mail:


For contacts:

Neyman V. Yu., e-mail: The authors declare a conflict of interest if any.


1. Volkov N. N., Redelin R. A., Kravchenko V. A., Kamanin Yu. N., Andreev A. V. Evaluation of the relationship between the parameters of the hydraulic percussion device and its drive. Nauchno-tekhnicheskij vestnik Bryanskogo gosudarstvennogo universiteta. 2020, no. 2, pp. 211—218. [In Russ]. DOI: 10.22281/2413-9920-2020-06−02−211−217.

2. Zhabin A. B., Kerimov Z. E. Analysis of the research results of impact machines. Gornoe oborudovanie i elektromekhanika. 2020. no. 3(149). pp. 49–54. [In Russ]. DOI 10.26730/1816-4528-2020-3-49−54.

3. Uraimov M. U, Erem’yanc V. E. Hydraulic hammer drill with combined impact mechanism and tool rotation mechanism. Transportnoe, gornoe i stroitel’noe mashinostroenie: nauka i proizvodstvo. 2021, no. 10, pp. 56—62. [In Russ]. DOI: 10.26160/2658-3305-202110−56−62.

4. Yampol’skij D. Z. Some features of shock impulses of impact machines. Vestnik nauchno-tekhnicheskogo razvitiya. 2020, no. 4 (152), pp. 26—42. [In Russ]. DOI: 10.18411/ vntr2020−152−4.

5. Abramenkov D. E., Popov N. A., Abramenkov E. A. Methodology for evaluating energy-saving technical solutions of impact machines and equipment. IOP Conference Series: Materials Science and Engineering. VIII International Scientific Conference Transport of Siberia. 2020, art. 012134. DOI: 10.1088/1757−899X/918/1/012134.

6. Aldannawy H., Rouabhi A., Gerbaud L. Percussive drilling: Experimental and numerical investigations. Rock Mechanics and Rock Engineering. 2022, vol. 55, no. 3, pp. 1555—1570. DOI: 10.1007/s00603-021-02707-5.

7. Zhabin A. B., Lavit I. M., Kerimov Z. E. Results of studies of the interaction of the striker and the tool during impact destruction of rocks. Gornoe oborudovanie i elektromekhanika. 2021, no. 3(155), рр. 48—53. [In Russ]. DOI 10.26730/1816-4528-2021-3-48−53.

8. Abidov A. O., Ismanov O. M. Mathematical model of an electromechanical rotary hammer drill. Byulleten’ nauki i praktiki. 2019, vol. 5. no. 5, pp. 233—240. [In Russ]. DOI: 10.33619/2414−2948/42/31.

9. Gumenyuk V., Dobroborsky B., Gumenyuk O., Krupyshev M. Providing high speed drilling of boreholes with portable pneumatic rock drills in emergency situations. IOP Conference Series: Materials Science and Engineering. 2019, vol. 666, art. 012094. DOI:1 0.1088/1757−899X/666/1/012094.

10. Nemkov S. A., Drozdov A. N., Stepanov V. V. Model of the operation of the compression-vacuum percussion mechanism of the SDSPLUS electric rock drill. Mekhanizaciya stroitel’stva. 2016, vol. 77, no. 11. pp. 46—49. [In Russ].

11. Zhukov I. A. New types of drilling tools for rock destruction. Transportnoe, gornoe i stroitel’noe mashinostroenie: nauka i proizvodstvo. 2021, no. 11, pp. 35— 39. [In Russ]. DOI 10.26160/2658-3305-2021-11−35−39.

12. Izhbuldin E. A., Abramov A. D. Hand-held electric percussion tool for the implementation of vibration shock technologies in transport engineering and construction. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2017, vol. 21, no. 1 (120), pp. 32—39. [In Russ]. DOI: 10.21285/1814-3520-2017-1-32−41.

13. Galdin N. S., Semenova I. A., Galdin V. N. Analysis of the striker stroke impact on the hydropneumatic impact devices energy performance. Journal of Physics. Conference Series. 2019, vol. 1260, no. 11, article 112010. DOI: 10.1088/1742−6596/1260/11/112010.

14. Redelin R. A., Kamanin Y. N., Panichkin A. V. Designing hydraulic impact devices for low-temperature operation. Journal of Physics. Conference Series. 2021, vol. 2096, no. 1, article 012005. DOI: 10.1088/1742−6596/2096/1/012005.

15. Rempel D., Antonucci A., Barr A., Cooper M. R., Martin B., Neitzel R. L. Pneumatic rock drill vs. electric rotary hammer drill: Productivity, vibration, dust, and noise when drilling into concrete. Applied ergonomics. 2019, vol. 74, pp. 31—36. apergo.2018.08.005.

16. Chervov V. V., Tishchenko I. V., CHervov A. V. Creation of a physical model of a shock pulse generator and a high-frequency pneumatic hammer. Gornyj zhurnal. 2022, no. 2, pp. 57—62. [In Russ]. DOI: 10.17580/gzh.2022.02.09.

17. Gorodilov L. V., Pershin A. I. Simulation model of a hydro-impact system with two limiters of striker movement. IOP Conference Series. Earth and Environmental Science. 2022, vol. 991, no. 1, article 012037. DOI: 10.1088/1755−1315/991/1/012037.

18. Neiman L. A., Neiman V. Yu., Shabanov A. S. A simplified calculation of the intermittent periodic operating regime of an electromagnetic impact drive. Russian Electrical Engineering. 2014, vol. 85, no. 12, pp. 757—760. DOI: 10.3103/S1068371214120104.

19. Yedygenov Ye. K., Vasin K. A. Test data of electromagnetic hammer for non-explosive rock fracturing. MIAB. Mining Inf. Anal. Bull. 2020, no. 5, pp. 80—90. [In Russ]. DOI: 10.25018/0236-1493-2020-5-0−80−90.

20. Pavlov V. E. Investigation of the operating modes of a long-stroke electromagnetic hammer by computer simulation. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2019, vol. 23, no. 2 (145), pp. 260—270. [In Russ]. DOI: 10.21285/1814-3520-2019-2-260−270.

21. Efimova Yu. B. Rational geometric parameters selection of a linear electromagnetic press with low plunger stroke. MIAB. Mining Inf. Anal. Bull. 2022;(12−2): 115—128. [In Russ]. DOI: 10.25018/0236_1493_2022_122_0_115.

22. Anufriev A. S., Pevchev V. P. Modeling the Process of Collision of an Armature with an Inductor in a Pulsed Electromagnetic Seismic Source. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskie nauki. 2018. no. 2 (58). pp. 101—109. [In Russ].

23. Simonov B. F., Kordubailo A. O., Neiman V. Y., Neiman L. A. Simulation modeling of operation of downhole vibration exciter em drive. Journal of Mining Science. 2020. vol. 56. no. 3. С. 435–444. [In Russ]. DOI: 10.15372/FTPRPI20200312.

24. Neiman V. Yu. Dynamic energy transformation of linear electromagnetic machines with preliminary magnetic-energy storage. Russian Electrical Engineering, 2003, vol. 74, no. 2, pp. 41—47.

25. Neyman L. A., Neyman V. Yu. Complex analysis of electromagnetic machines for vibro-impact technologies. IOP Conference Series: Earth and Environmental Science. 2017, vol. 87, art. 032026. DOI: 10.1088/1755−1315/87/3/032026.

26. Usanov K. M., Kargin V. A., Volgin A. V., Moiseev A. P. Assessment of operating modes of electromagnetic impact machines. Vestnik Altajskogo gosudarstvennogo agrarnogo universiteta. 2020, no. 10(192), pp. 137—142. [In Russ].

27. Kargin V. A., Volgin A. V., Moiseev A. P., CHurlyaeva K. D., Belov V. V. The use of an electromagnetic impact machine for immersing metal rod elements into the ground. Izvestiya Mezhdunarodnoj akademii agrarnogo obrazovaniya. 2019, no. 44, pp. 11—17. [In Russ].

28. Neyman V. Y. Selection of the Ratios of Basic Dimensions of an Electromagnetic Drive with an Open-Ended Axial Channel. Russian Electrical Engineering. 2022, vol. 93, no. 5. pp. 290—293. [In Russ]. DOI 10.3103/S1068371222050108.

29. Neyman L. A., Neyman V. Yu. Dynamic model of the electromagnetic impact mechanism of the electric rock drill. MIAB. Mining Inf. Anal. Bull. 2022; (12−2): 190—202. [In Russ]. DOI: 10.25018/0236_1493_2022_122_0_190.

30. Nazaruddin N., Siallagan R. Software Engineering Development of Finite Element Method Programming Applications in 2D Frame Structures Using Python Programs. Journal of Physics: Conference Series., 2021, vol. 2049, art. 012031. DOI:10.1088/1742−6596/204 9/1/012031.

31. Krutikov K. K., Rozhkov V. V. Features of modeling the electric and magnetic surface effect from alternating electromagnetic fields in FEMM. Elektrichestvo. 2020, no. 8, pp. 51—57. [In Russ]. DOI: 10.24160/0013-5380-2020-8-51−57.

32. Shevchenko V. P., Babiychuk O. B., Boltenkov V. O. Study of current transformers magnetic field by method final elements using the FEMM software complex. Applied aspects of information technology. 2019, vol. 2(4), pp. 317—327.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.