Selection of parameters of the electromagnetic impact unit of a perforator

Application of impact electromagnetic drives in the mining engineering and building sector provides high effectiveness of mechanical destruction of a rock or a building material when a bore-hole or a usual hole are drilled by means of a rotary-percussion drill. An electromagnetic impact unit should be improved because it is necessary to make it construction more rational and efficient. The paper states the results of investigations of the approach to rational design of electromagnetic impact unites of perforators and selection of their basic parameters with respect to a given value of the impact energy. The object of studies is the perforator impact unit implemented as a single-coil electromagnetic drive with the elastic reverse of its striker powered from a 50 Hz single-phase AC grid. The improved technique of the design of basic parameters of an electromagnetic impact unit is proposed. It is based on the generalized past experience of theoretical and experimental research. The first step of the design is preliminary one which is based on the determination of geometrical parameters of an electromagnetic impact unit and winding parameters of excitation coil. The second step is verifying one which is based on the estimation of the impact energy and the efficiency from the results of the first step. In contrast to existing approaches, the verifying calculation is executed by means of the created dynamical model of an impact unit that helps to analyze the operating process and visualize it. The mentioned above approach gives possibility to design basic parameters of impact units with adequate accuracy, reduces time and money expense and improves the quality of design.

Keywords: electromagnetic impact unit, perforator, electromagnetic drive, design technique, selection of parameters, dynamic model, magnetic field, operating process, impact energy.
For citation:

Neyman V. Yu., Neyman L. A. Selection of parameters of the electromagnetic impact unit of a perforator. MIAB. Mining Inf. Anal. Bull. 2024;(11−1):129—142. [In Russ]. DOI: 10.25018/0236_1493_2024_111_0_129.

Acknowledgements:
Issue number: 11
Year: 2024
Page number: 129-142
ISBN: 0236-1493
UDK: 621.313.282:621.928.235
DOI: 10.25018/0236_1493_2024_111_0_129
Article receipt date: 26.06.2024
Date of review receipt: 17.08.2024
Date of the editorial board′s decision on the article′s publishing: 10.10.2024
About authors:

Neyman V.Yu.1, Dr. Sci. (Eng.), Head of the Department, http://orcid.org/0000−0002−8433−1610, e-mail: nv_nstu@mail.ru;
Neyman L. A.1, Dr. Sci. (Eng.), Professor, http://orcid.org/0000−0002−3442−6531, e-mail: neyman31@gmail.com;
1 Novosibirsk State Technical University, 630073, Novosibirsk, Karl Marx Avenue, 20, Russia.

 

For contacts:

Neyman V. Yu., e-mail: nv_nstu@mail.ru.

Bibliography:

1. Izhbuldin E. A., Abramov A. D. Hand-held electric percussion tool for the implementation of vibration shock technologies in transport engineering and construction. Vestnik Irkutskogo gosudarstvennogo tekhnicheskogo universiteta. 2017, vol. 21, no. 1 (120), pp. 32—39. [In Russ]. DOI: 10.21285/1814−3520−2017−1-32−41.

2. Abramenkov D. E., Popov N. A., Abramenkov E. A. Methodology for evaluating energy-saving technical solutions of impact machines and equipment. IOP Conference Series: Materials Science and Engineering. VIII International Scientific Conference Transport of Siberia, 2020, article 012134. DOI: 10.1088/1757−899X/918/1/012134.

3. Anufriev A. S., Pevchev V. P. Modeling the Process of Collision of an Armature with an Inductor in a Pulsed Electromagnetic Seismic Source. Vestnik Samarskogo gosudarstvennogo tekhnicheskogo universiteta. Seriya: Tekhnicheskie nauki. 2018, no. 2 (58), pp. 101—109. [In Russ].

4. Usanov K. M., Kargin V. A., Volgin A. V., Moiseev A. P. Evaluation of operating modes of electromagnetic impact machines. Vestnik Altajskogo gosudarstvennogo agrarnogo universiteta. 2020, no. 10(192), pp. 137—142. [In Russ].

5. Gumenyuk V., Dobroborsky B., Gumenyuk O., Krupyshev M. Providing high speed drilling of boreholes with portable pneumatic rock drills in emergency situations. IOP Conference Series: Materials Science and Engineering. 2019, vol. 666, article 012094. DOI: 10.1088/1757−899X/666/1/012094.

6. Abidov A. O., Ismanov O. M. Mathematical model of an electromechanical hammer drill with a rotary-impact mechanism. Byulleten’ nauki i praktiki. 2019, vol. 5, no. 5, pp. 233—240. [In Russ]. DOI: 10.33619/2414−2948/42/31.

7. Neyman L. A., Neyman V. Y. Calculation of the vibration activity of design elements of a synchronous impact electromagnetic machine with a striker inertial reversal. Russian Electrical Engineering. 2021, vol. 92, no. 6, pp. 302—307. DOI: 10.3103/ S1068371221060043.

8. Usanov K. M., Volgin A. V., Kargin V. A., Moiseev A. P., Chetverikov E. A. Electric converters of electromagnetic strike machine with battery power. IOP Conference Series: Materials Science and Engineering. 2018, vol. 327, article 052031. DOI: 10.1088/1757−899X/327/5/052031.

9. Neiman V. Y. On the Top Motion Velocity of the Ferromagnetic Armature of a Solenoid Electromagnet. Russian Electrical Engineering. 2023, vol. 94, no. 5, pp. 306—309. [In Russ]. DOI: 10.3103/S1068371223050127.

10. Ivanov I. P., Samuilov D. V., Svincov G. P., Fedimirov A. A., Shpakov E. V. Improved methodology for designing current-carrying parts of electromagnetic contactors. Vestnik Chuvashskogo universiteta. 2021, no. 3, pp. 73—82. [In Russ]. DOI: 10.47026/1810−1909−2021−3-73−82.

11. Apollonskij S. M., Kuklev Yu. V. Electrical control devices: Monograf. Moscow, Publishing house “Rusajns”, 2016, 318 p. [In Russ].

12. Caseiro L., Caires D., Mendes A. Prototyping power electronics systems with zynqbased boards using Matlab/Simulink A complete methodology. Electronics. 2022, vol. 11, no. 7, article 1130. https://doi.org/10.3390/electronics11071130.

13. Semenov A., Semenova M., Bebikhov Y., Egorov A., Vasilyev P., Kharitonov Y. Vibrating feeder electromagnetic drive model implemented in MatLab/Simulink. International Conference on Electrotechnical Complexes and Systems (ICOECS). IEEE, 2021, pp. 88—92. DOI: 10.1109/ICOECS52783.2021.9657343.

14. Shneen S. W., Aziz G. A. Simulation model of 3-phase pwm rectifier by using MATLAB/SIMULINK. International Journal of Electrical and Computer Engineering. 2021, vol. 11, no. 5, pp. 3736–3746. DOI: 10.11591/ijece.v11i5.pp3736−3746.

15. Nazaruddin N., Siallagan R. Software engineering development of finite element method programming applications in 2D frame structures using python programs. Journal of Physics: Conference Series. 2021, vol. 2049, article 012031. DOI: 10.1088/1742−6596/ 2049/1/012031.

16. Shevchenko V. P., Babiychuk O. B., Boltenkov V. O. Study of current transformers magnetic field by method final elements using the FEMM software complex. Applied aspects of information technology. 2019, vol. 2(4), pp. 317—327.

17. Krutikov K. K., Rozhkov V. V. Features of electrical and magnetic skin effect modeling from alternating electromagnetic fields in FEMM. Russian Electrical Engineering. 2020, vol. 91, no. 12, pp. 781—785. https://doi.org/10.3103/S106837122012010X.

18. Neyman L. A., Neyman V. Yu. Linear synchronous electromagnetic impact machines. Stries: Monograph. Novosibirsk, Publishing house of NSTU, 2021, 480 p. [In Russ].

19. Le Roux P. F., Ngwenyama M. K. Static and Dynamic simulation of an induction motor using Matlab/Simulink. Energies. 2022, vol. 15, no. 10, p. 3564. https://www.mdpi. com/1996−1073/15/10/3564.

20. Shao L., Karci A. E. H., Tavernini D., Sorniotti A., Cheng M. Design approaches and control strategies for energy-efficient electric machines for electric vehicles — A review. IEEE Access. 2020, vol. 8, pp. 116900–116913. DOI: 10.1109/ ACCESS.2020.2993235.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.