Selection of copper–nickel sulfide ore flotation parameters based on floatability ranking of flotation components

This research is necessitated by the high demand for novel and advanced approaches to flotation toward a deeper insight into the process and, as a consequence, for the improvement of its efficiency. As a case-study of copper–nickel sulfide ore, the results of a procedure for estimating components based on their floatability ranking are described. In flotation with frother and in flotation with full set of reagents, at justified consumption of a collecting mixture, the carryover of a gangue material to concentrates is estimated, and the flotation time is substantiated on this base. The relation between the recovery of different sizes of silicium in concentrate and the recovery of water is examined. The analysis of the data on change in the free surface energy and its dispersion as function of the collecting mixture consumption, and their resultant influence on the copper and nickel recovery in concentrate made it possible to justify the collecting mixture consumption for the complete extraction of sulfide minerals in concentrate. The floatability ranking analysis of flotation components is carried out using the floatability index of 0.010, 0.005, 0.001 and 0 for the fast-float, medium-float, slow-float and non-float fractions, respectively.

Keywords: kinetics of flotation, copper–nickel ore, floatability, fast-float fraction, carryover, non-float fraction, sulfhydryl collectors, medium-float fraction, slow-float fraction, free surface energy.
For citation:

Aleksandrova T. N., Afanasova A. V., Kuznetsov V. V., Aburova V. A. Selection of copper–nickel sulfide ore flotation parameters based on floatability ranking of flotation components. MIAB. Mining Inf. Anal. Bull. 2022;(1):131-147. [In Russ]. DOI: 10.25018/0236_ 1493_2022_1_0_131.

Acknowledgements:

The study was supported by the Russian Science Foundation, Project No. 19-17-00096.

Issue number: 1
Year: 2022
Page number: 131-147
ISBN: 0236-1493
UDK: 622.765
DOI: 10.25018/0236_1493_2022_1_0_131
Article receipt date: 15.03.2021
Date of review receipt: 28.06.2021
Date of the editorial board′s decision on the article′s publishing: 10.12.2021
About authors:

T.N. Aleksandrova1, Dr. Sci. (Eng.), Professor, Head of Chair,
A.V. Afanasova1, Cand. Sci. (Eng.), Assistant of Chair,
V.V. Kuznetsov1, Graduate Student, e-mail: valentinvadimovichkuznetsov@gmail.com,
V.A. Aburova1, Student,
1 Saint-Petersburg Mining University, 199106, Saint-Petersburg, Russia.

 

For contacts:

V.V. Kuznetsov, e-mail: valentinvadimovichkuznetsov@gmail.com.

 

Bibliography:

1. Litvinenko V. S., Sergeev I. B. Innovative development of the mineral mining sector. Problemy prognozirovaniya. 2019, no. 6 (177), pp. 60—72. [In Russ].

2. Cрanturiya V. A. Innovative processes in rebellious mineral processing technologies. Geologiya rudnykh mestorozhdeniy. 2008, vol. 50, no. 6, pp. 558—568. [In Russ].

3. Ignatkina V. A. Selective reagent regimes of flotation of non-ferrous and noble metal sulfides from refractory sulfide ores. Tsvetnye metally. 2016, no. 11, pp. 27—33. [In Russ].

4. O’Connor C., Alexandrova T. The geological occurrence, mineralogy, and processing by flotation of platinum group minerals (PGMs) in South Africa and Russia. Minerals. 2021, vol. 11, no. 1, pp. 54.

5. Gorlova O. E., Khizhnikova Yu. I. Replacement of aeration assemblies in mechanical-air machines for aeration assemblies RIF manufactured by RIVS toward improvement of concentrate quality at Alexandrinskaya Mining Company. Aktual'nye problemy sovremennoy nauki, tekhniki i obrazovaniya. 2013, vol. 1, no. 71, pp. 41—44. [In Russ].

6. Ignatkina V. A., Bocharov V. A., Tubdenova B. Selective flotation modes for sulfide ore based on combination of different rank collectors. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2010, no. 1, pp. 97—103. [In Russ].

7. Grau R., Saari J., Maksimov I. I., Egorova V. G., Kuznetsova I. А. The Udokan deposit copper ores processing technology development studies. Obogashchenie Rud. 2018, no. 1, pp. 21—25. [In Russ].

8. Cilek E. C. Estimation of flotation kinetic parameters by considering interactions of the operating variables. Minerals Engineering. 2004, vol. 17, no. 1, pp. 81—85.

9. Beloglazov I. N. Flotation kinetics equation. Journal of Mining Institute. 2008, vol. 177, pp. 129—132. [In Russ].

10. Sorokina S. V., Kosovtseva T. R. Flotation kinetics software engineering. Sovremennye obrazovatel'nye tekhnologii v prepodavanii estestvenno-nauchnykh i gumanitarnykh distsiplin. Sbornik nauchnykh trudov IV Mezhdunarodnoy nauchno-metodicheskoy konferentsii [Advanced Educational Technologies in Natural and Humanitarian Science Teaching: IV International Methodical Conference Proceedings], Saint-Petersburg, 2017, pp. 907—913. [In Russ].

11. Geldenhuys S., Thiago Souza T., Filho L. L., Deglon D. Process evaluation of an iron ore operation using the floatability component model. Minerals. 2021, vol. 11, no. 6, pp. 589.

12. Bu X., Xie G., Peng Y., Ge L., Ni C. Kinetics of flotation. Order of process, rate constant distribution and ultimate recovery. Physicochemical Problems of mineral processing. 2017, vol. 53, no. 1, pp. 342—365.

13. Ruuska J., Lamberg P., Leiviskä K. Flotation model based on floatability component approach–PGE minerals case. IFAC Proceedings Volumes. 2012, vol. 45, no. 23, pp. 19—24.

14. Huber-Panu I., Ene-Danalache E., Cojocariu D. G. Mathematical models of batch and continuous flotation. M. C. Fuerstenau (Ed.). Flotation, AIME, New York, 1976, pp. 675—724.

15. Welsby S. D. D., Vianna S., Franzidis J. P. Assigning physical significance to floatability components. International Journal of Mineral Processing. 2010, vol. 97, no. 1—4, pp. 59—67.

16. Savassi O. N., Alexander D. J., Franzidis J. P., Manlapig E. V. An empirical model for entrainment in industrial flotation plants. Minerals Engineering. 1998, vol. 11, no. 3, pp. 243—256.

17. Wang L., Peng Y., Runge K., Bradshaw D. A review of entrainment: Mechanisms, contributing factors and modelling in flotation. Minerals Engineering. 2015, vol. 70, pp. 77—91.

18. Kurchukov A. M. Copper–nickel ore flotation reagent mode control algorithm based on optimization of pulp ion composition parameters. Journal of Mining Institute. 2011, vol. 189, pp. 292—294. [In Russ].

19. Abidi A., Elamari K., Bakaui A., Yakubi A. Carryover and true flotation of natural complex sulfide ore. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2014, no. 6, pp. 181—189. [In Russ].

20. Neethling S. J., Cilliers J. J. The entrainment of gangue into a flotation froth International. Journal of Mineral Processing. 2002, vol. 64, no. 2—3, pp. 123—134.

21. Boduen A. Ya., Petrov G. V., Diakite M. L. L., Boginskaya A. S., Spynu A. Yu. Noble metal concentration in processing of sulfide ore dust and slag waste. Journal of Mining Institute. 2013, vol. 202, no. 3, pp. 164—167. [In Russ].

22. Abramov A. A. Concept of construction of selective collecting agents. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2011, no. 1, pp. 90—104. [In Russ].

23. Solozhenkin P. M. Mechanism of interaction between xanthate homologues and minerals during flotation by computer modeling data. 50 let rossiyskoy nauchnoy shkole kompleksnogo osvoeniya nedr zemli. Materialy Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Russian School of Integrated Subsoil Management is 50: International Conference Proceedings], Moscow, 2017, pp. 368—372. [In Russ].

24. Rudolph M., Hartmann R. Specific surface free energy component distributions and flotabilities of mineral microparticles in flotation —An inverse gas chromatography study. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2017, vol. 513, pp. 380—388.

25. Mohammadi-Jam S., Burnett D. J., Waters K. E. Surface energy of minerals — Applications to flotation. Minerals Engineering. 2014, vol. 66, pp. 112—118.

26. Dodin D. A., Polferov D. V., Tarnovetskiy L. L., Chernyshov N. M. Platinum-and-metal deposits in the world, vol. 1. Platinometal'nye malosul'fidnye mestorozhdeniya v ritmichno rassloennykh kompleksakh [Platinum-and-metal low-sulfide deposits in in rhythmic-bedded formations], Book 1, Moscow, Geoinformmark, 1994, 279 p.

27. Ryaboy V. I., Shenderovich V. A., Kretov V. P. Aeroflot agents in ore flotation. Obogashchenie Rud. 2005, no. 6, pp. 43—44. [In Russ].

28. Tsemekhman L. Sh., Tsymbulov L. B., Pakhomov R. A., Popov V. A. Behavior of platinum metals during sulfide copper-nickel raw materials processing. Tsvetnye metally. 2016, no. 11, pp. 50—56. [In Russ].

29. Cilek E. C., Yilmazer B. Z. Effects of hydrodynamic parameters on entrainment and flotation performance. Minerals Engineering. 2003, vol. 16, no. 8, pp. 745—756.

30. George P., Nguyen A. V., Jameson G. J. Assessment of true flotation and entrainment in the flotation of submicron particles by fine bubbles. Minerals Engineering. 2004, vol. 17, no. 7—8, pp. 847—853.

31. Rudawska A., Jacniacka E. Analysis for determining surface free energy uncertainty by the Owen–Wendt method. International Journal of Adhesion and Adhesives. 2009, vol. 29, no. 4, pp. 451—457.

32. Janssen D., Palma R. D., Verlaak S., Heremans P., Dehaen W. Static solvent contact angle measurements, surface free energy and wettability determination of various self-assembled monolayers on silicon dioxide. Thin Solid Films. 2006, vol. 515, no. 4, pp. 1433—1438.

33. Alexander D. J., Morrison R. D. Rapid estimation of floatability components in industrial flotation plants. Minerals Engineering. 1998, vol. 11, no. 2, pp. 133—143.

34. Alexandrova T. N., Romashev A. O., Kuznetsov V. V. Development of a methodological approach to establishing the floatability of finely disseminated sulfides. Obogashchenie Rud. 2020, no. 2, pp. 9—14. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.