Identification of fault zones within an orebody using a set of geophysical methods

Authors: Bazhenova E.A.

The article discusses the results of complexing of land works and downhole geophysical surveys in the area of an iron ore deposit. The research undertaken at the North Taratash site was aimed to detect and estimate the geodynamic activity of disjunctive faults within the boundaries of Kuvatal occurrence of magnetite quartzite. The borehole surveys included recording of geoacoustic emission and electromagnetic radiation. The land works package consisted of areal magnetometry, hand-held gamma-radiation survey and radon measurements. The geoacoustic emission and electromagnetic radiation data analysis reveals the anomalies conditioned by the proximity to faults. The frequency ranges of signals of geoacoustic emission and electromagnetic radiation are determined, which enables identifying geodynamically active fault zones in the geological borehole environment. The land works in the test borehole area aimed to confirm the borehole logging results. During the research, the anomalous magnetic fields were mapped, and the three-dimensional graphs of radon activity were plotted. The analysis results of the available geological information on the structure of the test area, data of land works and borehole surveys prove the known faults and reveal new geodynamically active faults within the limits of the studied geophysical fields.

Keywords: geoacoustic emission, electromagnetic radiation, logging, land magnetometry, hand-held gamma-radiation survey, faults, stress–strain behavior, complexing.
For citation:

Bazhenova E. A. Identification of fault zones within an orebody using a set of geophysical methods. MIAB. Mining Inf. Anal. Bull. 2022;(5):67-83. [In Russ]. DOI: 10.25018/ 0236_1493_2022_5_0_67.

Acknowledgements:
Issue number: 5
Year: 2022
Page number: 67-83
ISBN: 0236-1493
UDK: 550.832
DOI: 10.25018/0236_1493_2022_5_0_67
Article receipt date: 01.11.2021
Date of review receipt: 10.03.2022
Date of the editorial board′s decision on the article′s publishing: 10.04.2022
About authors:

E.A. Bazhenova, Researcher, e-mail: bazenova_jena@mail.ru, Institute of Geophysics of Ural Branch, Russian Academy of Sciences, 620016, Ekaterinburg, Russia, ORCID ID: 0000-0002-2068-7140.

 

For contacts:
Bibliography:

1. Lomov M. A., Konstantinov A. V., Tereshkin A. A. Promising methods of assessment and control of the geomechanical state of rock massifs. Problems of Subsoil Use. 2019, no. 4(23), pp. 83—90. [In Russ]. DOI: 10.25635/2313-1586.2019.04.083.

2. Vostretsov A. G., Krivetskiy A. V., Bizyaev A. A., Yakovitskaya G. E. Characteristics of electromagnetic radiation of rocks during their destruction in laboratory experiments. Doklady Akademii nauk vysshey shkoly Rossiyskoy Federatsii. 2013, no. 2(21), pp. 46—54. [In Russ].

3. Bizyaev A. A., Savchenko A. V., Tsupov M. N., Smirnyagin I. I., Smirnov M. N. Studies of electromagnetic radiation signals accompanying the destruction of rocks. Sovremennye tendentsii i innovatsii v nauke i proizvodstve: Materialy IX Mezhdunarodnoy nauchno-prakticheskoy konferentsii [Modern trends and innovations in science and production: Materials of the IX International Scientific and Practical Conference], Mezhdurechensk, KuzGTU, 2020, pp. 1051— 1056. [In Russ].

4. Kul'kov D. S., Imashev S. A. Analysis of acoustic emission signals in geomaterial samples under uniaxial compression conditions. Izvestiya Kyrgyzskogo gosudarstvennogo tekhnicheskogo universiteta im. I. Razzakova. 2019, no. 2—1(50), pp. 274—280. [In Russ].

5. Kong Biao, Wang Enyuan, Li Zenghua Regularity and coupling correlation between acoustic emission and electromagnetic radiation during rock heating process. Geomechanics and Engineering. 2018, vol. 15, no. 5, pp. 1125—1133. DOI: 10.12989/gae.2018.15.5.1125.

6. Bogomolov L. M. On the mechanism of electromagnetic influence on the kinetics of microcracks and electrostimulated variations of acoustic emission of rock samples. Physical Mesomechanics. 2010, vol. 13, no. 3, pp. 39—56. [In Russ].

7. Kulakov G. I., Yakovitskaya G. E., Sharapova M. D., Shchelkanova V. I. Prediction of crack formation in deformable structural materials and rocks by their electromagnetic emission. Interexpo GEO-Siberia. 2016, vol. 2, no. 3, pp. 163—168. [In Russ].

8. Zhong-Hui Li, Quan Lou, En-Yuan Wang, Shuai-Jie Liu, Yue Niu Study on acoustic-electric-heat effect of coal and rock failure processes under uniaxial compression. Journal of Geophysics and Engineering. 2018, vol. 15, no. 1, pp. 71—80. DOI: 10.1088/1742-2140/aa8437.

9. Xiaofei Liu, Enyuan Wang Study on characteristics of EMR signals induced from fracture of rock samples and their application in rockburst prediction in copper mine. Journal of Geophysics and Engineering. 2018, vol. 15, no. 3, pp. 909—920. DOI: 10.1088/1742-2140/aaa3ce.

10. Shuman V. N. Nonlinear dynamics of the geo-environment: transients and critical phenomena. Geopysical Journal. 2014, vol. 36, no. 6, pp. 129—142. [In Russ].

11. Zhang Q., Wang E., Feng X., Yue N., Ali M., Lin S., Wang H. Rockburst risk analysis during high-hard roof breaking in deep mines. Natural Resources Research. 2020, vol. 29, no. 17, pp. 4085—4101. DOI: 10.1007/s11053-020-09664-w.

12. Rasskazov I. Yu. Geoacoustic precursors of mountain impacts. Vestnik Dal'nevostochnogo gosudarstvennogo tekhnicheskogo universiteta. 2011, no. 3/4(8/9), pp. 121—143. [In Russ].

13. Rasskazov I. Yu., Migunov D. S., Anikin P. A., Gladyr' A. V., Tereshkin A. A., Zhelnin D. O. Geoacoustic portable device of a new generation for assessing the impact hazard of a rock mass. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2015, no. 3, pp. 169—179. [In Russ].

14. Potapov P. V., Shvedikova I. N. On the issue of studying the geomechanical state of rocks and the activity of electromagnetic radiation in the fields of the Yuzhnaya and Chernihiv mines by geophysical methods. Vestnik nauchnogo tsentra po bezopasnosti rabot v ugol'noy promyshlennosti. 2011, no. 1, pp. 48—52. [In Russ].

15. Vdovin A. G., Beloglazova N. A. Geophysical studies of dynamic stability of rock massifs during quarry development. Ural'skiy geofizicheskiy vestnik. 2020, no. 1(39), pp. 4—11. [In Russ]. DOI: 10.25698/UGV.2020.1.1.04.

16. Uvarov V. N., Malkin E. I., Sannikov D. V. Electromagnetic manifestation of geoacoustic emission of the lithosphere. Bulletin of the Kamchatka Regional Association Educational and Scientific Center (KRASEC). Physicsal and Mathematicsal Sciences. 2016, no. 1(12), pp. 55— 65. [In Russ]. DOI: 10.18454/2079-6641-2016-12-1-55-65.

17. Bokov V. N., Vorob'ev V. N. Variability of geoacoustic emission and changes in atmospheric circulation. Uchenye zapiski Rossiyskogo gosudarstvennogo gidrometeorologicheskogo universiteta. 2013, no. 32, pp. 43—54. [In Russ].

18. Hamimi Z., Hagag W., Osman R., El-Bialy M., Abu El-Nadr I., Ei Sayed Fadel M. The active Kalabsha Fault Zone in Southern Egypt: detecting faulting activity using field-structural data and EMR-technique, and implications for seismic hazard assessment. Arabian Journal of Geosciences. 2018, vol. 11, no. 15, pp. 421. DOI: 10.1007/s12517-018-3774-1.

19. Troyanov A. K., D'yakonov B. P., Martyshko P. S., Astrakhantsev Yu. G., Nachapkin N. I., Gavrilov V. A., Beloglazova N. A. Seismoacoustic emission and electromagnetic radiation of fractured rocks in wells. Doklady Akademii nauk. 2011, vol. 436, no. 1, pp. 118—120. [In Russ]. DOI: 10.1134/S1028334X11010119.

20. Belyakov A. S., Didenkulov I. N., ZHigalin A. D., Lavrov V. S., Malekhanov A. I., Nikolaev A. V. Seismoacoustic monitoring in the Vorotilovskaya deep well: methodology and results. Geology and Geophysics of Russian South. 2017, no. 3, pp. 5—12. [In Russ].

21. Gavrilov V. A., Poltavtseva E. V., Deshcherevskiy A. V., Buss Yu. V., Morozova Yu. V. Monitoring of the state of the geoenvironment based on synchronous geo-acoustic and electromagnetic borehole measurements: the use of natural electro-magnetic radiation. Seysmicheskie pribory. 2015, vol. 51, no. 4, pp. 41—57. [In Russ].

22. Druzhinin V. S., Nachapkin N. I., Osipov V. Yu. Identification and mapping of deep faults based on seismic data and their manifestation in geophysical fields. Izvestiya Ural’skogo gosudarstvennogo gornogo universiteta. 2018, no. 3(51), pp. 47—53. [In Russ]. DOI: 10.21440/23072091-2018-3-47-53.

23. Pystin A. M., Pystina Yu. I. Archean-Paleoproterozoic history of metamorphism of rocks of the Ural segment of the Earth's crust. Transactions of the Karelian Research Centre of the Russian Academy of Sciences. Precambrian Geology. 2015, no. 7, pp. 3—18. [In Russ]. DOI: 10.17076/geo163.

24. Tevelev A. V., Tevelev A. V., Fedorchuk V. A., Khotylev A. O., Kosheleva I. A. Taratash indenter and its role in the structure of the Urals. Moscow University Bulletin. Series 4. Geology. 2017, no. 1, pp. 3—12. [In Russ].

25. Zakis A. S. Tekhniko-ekonomicheskoe obosnovanie vremennykh razvedochnykh konditsiy dlya podscheta zapasov zheleznykh rud proyavleniya Kuvatal Severo-Taratashskogo uchastka v Cрelyabinskoy oblasti (podzemnaya otrabotka): otchet o NIR [Feasibility study of temporary exploration conditions for the calculation of iron ore reserves in the Kuvatal of the Severo-Taratashsky site in the Chelyabinsk region (underground mining). Research report], Chelyabinsk, OAO MMK, 2017. [In Russ].

26. Astrakhantsev Yu. G., Bazhenova E. A., Beloglazova N. A., Vdovin A. G., Glukhikh I. I., Ivanchenko V. S., Khachay O. A. Kompleksnye geofizicheskie issledovaniya massivov gornykh porod v estestvennom zaleganii [Complex geophysical studies of rock massifs in natural occurrence], Ekaterinburg, UrO RAN, 2018. 105 p.

27. Astrakhantsev Yu. G., Beloglazova N. A., Troyanov A. K. Patent RU 2658592 C1, 21.06.2018. [In Russ].

28. Sapunov V. A., Narkhov E. D., Denisov A. Yu., Savel'ev D. V., Murav'ev L. A. Modern overhauser POS magnetometers are a reliable data source for geological interpretation. Voprosy teorii i praktiki geologicheskoy interpretatsii gravitatsionnykh, magnitnykh i elektricheskikh poley: Sbornik nauchnykh trudov [Questions of theory and practice of geological interpretation of gravitational, magnetic and electric fields, Collection of scientific materials], Perm, GI UrO RAN, 2019, pp. 327—332. [In Russ].

29. Antipin A. N., Khatskevich B. D. Results of radiometric research methods at the North Tatar site. XIX Ural'skaya molodezhnaya nauchnaya shkola po geofizike: Sbornik nauchnykh materialov [XIX Ural Youth Scientific School of Geophysics, Collection of scientific materials], Ekaterinburg, IGF UrO RAN, 2018, pp. 4—6.

30. Beloglazova N. A., Bazhenova E. A., Vdovin A. G. Geodynamic situation of the NorthTaratash site for geophysical well surveys. Ural'skiy geofizicheskiy vestnik. 2017, no. 1(29), pp. 60—65. [In Russ].

31. Vdovin A. G. Electromagnetic radiation as an indicator of massive magnetite mineralization. Glubinnoe stroenie, geodinamika, teplovoe pole zemli, interpretatsiya geofizicheskikh poley: Sbornik nauchnykh materialov [Deep structure, geodynamics, thermal field of the earth, interpretation of geophysical fields, Collection of scientific materials], Ekaterinburg, IGF UrO RAN, 2015, pp. 393—396. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.