Correlation of Abrasiveness Parameters of Tunnel Excavation Rock Soils Using Rotating Hollow Rod and Impeller Standards

Rocky soils from tunnel excavation sites using tunnel boring machines were used as test samples: limestones from the Suvorovskaya metro station and dolomites from the Rizhskaya station of the Moscow Big Circle Line. To assess the strength of the samples, tests were conducted to determine the ultimate compressive strength and tensile strength using the Brazilian scheme. To assess the abrasiveness, a setup with a rotating hollow rod by L. I. Baro n — A. V. Kuznetsov method (coefficient Ka) had been used. After re-equipment, it also had been used to assess the abrasiveness of rocky and dispersed soils using the rotating impeller method. I had been developed in the Laboratoire Central des Ponts et Chausées, France, abbreviated LCPC (coefficient LAC). Equations had been obtained for the correletion of LAC with the ultimate strength of rocky soils under compression and tension, with the average size of a piece, and with the coefficient Ka. Such equations can be used for operational control of the abrasiveness of rocky and dispersed soils, as well as for predicting the wear of cutting tools for their timely replacement during tunneling using tunnel boring machines, drilling boreholes and in other applications.

Keywords: soils, rocky soil, abrasiveness, methods, hollow rod, impeller, equations, strength, piece size, wear, cutting tool.
For citation:

Mazein S. V., Prishchepov V. V., Voznesenskii A. S., Kutkin Ya.O. Correlation of Abrasiveness Parameters of Tunnel Excavation Rock Soils Using Rotating Hollow Rod and Impeller Standards. MIAB. Mining Inf. Anal. Bull. 2024;(11−1):116—128. [In Russ]. DOI: 10.25018/0236_1493_2024_111_0_116.

Acknowledgements:
Issue number: 11
Year: 2024
Page number: 116-128
ISBN: 0236-1493
UDK: 622.026.3
DOI: 10.25018/0236_1493_2024_111_0_116
Article receipt date: 02.09.2024
Date of review receipt: 09.10.2024
Date of the editorial board′s decision on the article′s publishing: 10.10.2024
About authors:

Mazein S. V.1, Dr. Sci. (Eng.), associate Professor, e-mail: maz-bubn@mail.ru, ORCID ID: 0009−0001−8557−8906;
Prishchepov V.V.1, PhD Student, e-mail: wowpolo96@mail.ru, ORCID ID: 0009−0000−6458−3290;
Voznesenskii A. S.1, Dr. Sci. (Eng.), Professor, e-mail: asvoznesenskii@misis.ru, ORCID ID: 0000−0003−0926−1808;
Kutkin Ya. O.1, Cand. Sci. (Eng.), associate Professor, e-mail: kutkin.yo@misis.ru, ORCID ID: 0000−0003−2644−3371;
1 University of Science and Technology MISIS, 119049, Moscow, Leninskii Prospect, 4, b.1, Russia.

 

For contacts:

Voznesenskii A. S., e-mail: asvoznesenskii@misis.ru.

Bibliography:

1. Zhang G., Konietzky H. Cerchar Abrasion Ratio (CAR) as a New Indicator for Assessing Rock Abrasivity, Rock–Stylus Interaction and Cutting Efficiency. Rock Mechanics and Rock Engineering. 2020, vol. 53, pp. 3363–3371. DOI: https://doi. org/10.1007/s00603−020−02112−4.

2. Mazein S. V., Voznesensky A. S., Prishchepov V. V. Methods of determining the abrasiveness of solid rock during mechanized excavation of long tunneling. Geotechnics. 2022, vol. 14, no. 3, pp. 44−55. [In Russ]. DOI: https://doi. org/10.25296/2221−5514−2022−14−3-44−54.

3. Guangzhe Kurosch Thuro, Heinz Konietzky, Florian M. Menschik, Heiko Käsling, Michael Bayerl. In-situ investigation of drilling performance and bit wear on an electrical drill hammer. Tunnelling and Underground Space Technology. 2022, vol. 122, 104348. DOI: https://doi.org/10.1016/j.tust.2021.104348.

4. Abu Bakar M. Z., Majeed Y. Dependence of Drillability Parameters on Engineering Properties of Selected Rocks from Pakistan. Journal of Mining Science. 2024, vol. 60, pp. 87–101. DOI: https://doi.org/10.1134/S1062739124010101.

5. Ghodrat Barzegari, Ali Uromeihy, Jian Zhao. Parametric study of soil abrasivity for predicting wear issue in TBM tunneling projects. Tunnelling and Underground Space Technology. 2015, vol. 48, pp. 43–57. DOI: https://doi.org/10.1016/j. tust.2014.10.010.

6. Jakobsen P. D., Bruland A., Dahl F. Review and assessment of the NTNU / SINTEF Soil Abrasion Test (SATTM) for determination of abrasiveness of soil and soft ground. Tunnelling and Underground Space Technology. 2013, vol. 37, pp. 107–114. DOI: https://doi.org/10.1016/j.tust.2013.04.003.

7. Hashemnejad A., Hassanpour J. Proposed soil classification based on the experiences of soft-ground tunneling in Iran. Bulletin of Engineering Geology and the Environment. 2017, vol. 76, pp. 731–750. DOI: https://doi.org/10.1007/ s10064−016−0868−4.

8. Zhabin A. B., Polyakov A. V., Averin E. A. Of the need to introduce a state standard for determination of rock abrasiveness. Ugol’. 2018, no. 11, pp. 86–91. DOI: http://dx.doi.org/10.18796/0041−5790−2018−11−86−91.

9. Mazein S. V. Optimisation of rotor equipment and periodicity of replacement of the cutting tool at shield drivage of tunnel and other mine excavation. Gornyi Zhurnal. 2009, no. 10, pp. 84–86. [In Russ].

10. Masood Zahiri Galeshi, Kamran Goshtasbi, Jafar Khademi Hamidi, Kaveh Ahangari. Numerical Investigation of Effect of Rock Bolt Angle on Shear Behavior of Rock Bridges. Journal of Mining and Environment. 2020, vol. 11, no. 4, pp. 1095–1113. DOI: https://doi.org/10.22044/jme.2020.9933.1922.

11. Duan Wenjun, Zhang Mengqi, Gou Bin, Mo Jiliang, Zhou Zhongrong. Influence of Cross-Section Profile on Wear Behavior of TBM Cutters in Hard Rock Stratum. Tribology. 2023, vol. 43, no. 7, pp. 738–749. DOI: 10.16078/j.tribology.2022102.

12. Kojfman M. I. Abrazivnye svojstva mineral’nyh chastic, Moscow, tipografija im. K. Marksa, 1932, 64 p. [In Russ].

13. Baron L. I., Kuznecov A. V. Abrazivnost’ gornyh porod pri dobyvanii, Moscow, Izdatel’stvo AN USSR, 1961, 167 p. [In Russ].

14. Käsling H., Thuro K. Determining rock abrasivity in the laboratory. Rock Mechanics in Civil and Environmental Engineering — Proceedings of the European Rock Mechanics Symposium, EUROCK 2010, 2010, pp. 425–428.

15. Alber M., Yarali O., Dahl F., Bruland A., Kaesling H., Michalakopoulos T., Cardu M., Hagan P., Aydin H., Ozarslan A. ISRM Suggested Method for Determining the Abrasivity of Rock by the CERCHAR Abrasivity Test. Rock Mechanics and Rock Engineering. 2014, vol. 47, pp. 261–266. DOI: https://doi.org/10.1007/ s00603−013−0518−0.

16. Mohammad-Taghi Hamzaban, Behnam Karami, Jamal Rostami. Effect of Pin Speed on Cerchar Abrasion Test Results. Journal of Testing and Evaluation. 2019, vol. 47, issue 1, pp. 121–139. DOI: https://doi.org/10.1520/JTE20170406.

17. Majeed Y., Abu Bakar M. Z. Effects of variation in the particle size of the rock abrasion powder and standard rotational speed on the NTNU/SINTEF abrasion value steel test. Bulletin of Engineering Geology and the Environment. 2019, vol. 78, pp. 1537–1554. DOI: https://doi.org/10.1007/s10064−017−1211−4.

18. Qian Li, Junping Li, Longchen Duan, Songcheng Tan. Prediction of rock abrasivity and hardness from mineral composition. International Journal of Rock Mechanics and Mining Sciences. 2021, vol. 140, 104658. DOI: https://doi.org/10.1016/j. ijrmms.2021.104658.

19. Martin Feinendegen, Martin Ziegler. The significance of the LCPC test as a tool for the specification of homogeneous areas. Geomechanics and Tunnelling. 2018, vol. 11, issue 2, pp. 94–184. DOI: https://doi.org/10.1002/geot.201800004.

20. Voznesensky A. S., Mazein S. V., Prishchepov V. V., Kutkin Ya. O. Abrasiveness Assessment of Geomaterials by Parameters of Acoustic Emission in Disintegration. Journal of Mining Science. 2024, vol. 60, issue 3, pp. 397–406. https://doi.org/10.1134/ S1062739124030050.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.