Digital Mine architecture modeling language: Methodological approach to design in Industry 4.0

The article discusses proposals on unification of methods for graphical modeling of architecture of complex large-scale systems in digital transformation design of production units within the concept of Industry 4.0. Article’s Section 2 formalizes and examines the functional and nonfunctional requirements for the architecture of digital mines in Industry 4.0. Section 3 focuses on some problems connected with traditional notations of graphical modeling and offers a minimum set of interconnected diagrams suitable for the digital mine architecture design, including original diagrams developed by the present article authors. Sections 4 illustrates implementation of an approach to compilation of a set of diagrams—DEAL 1.0 (Digital Enterprise Architecture Language)—for the architectural design of an open pit mine management system. Based on the research results, the key functional and nonfunctional requirements are formulated for the digital mines within the concept of Industry 4.0, and the design methodology is proposed for the data-centric microservice architecture of a digital mine, including rethinking and modification of the current notations of graphical modeling, an original approach to construction of diagrams, a trade-off approach to systems engineering and an apparatus for the design and quality control in implementation of the complex large-scale program product.

Keywords: DEAL 1.0, digital transformation of enterprises. Industry 4.0, digital platform, graphical modeling, service-oriented architecture, microservice architecture, data-centric architecture, software architecturization, architecture model.
For citation:

Deryabin S. A., Kondratev E. I.,Rzazade Ulvi Azar ogly, Temkin I. O. Digital Mine architecture modeling language: Methodological approach to design in Industry 4.0. MIAB. Mining Inf. Anal. Bull. 2022;(2):97-110. [In Russ]. DOI: 10.25018/0236_1493_2022_2_0_97.

Acknowledgements:

The study was supported by the Russian Science Foundation, Grant No. 19-17-00184.

Issue number: 2
Year: 2022
Page number: 97-110
ISBN: 0236-1493
UDK: 004:622
DOI: 10.25018/0236_1493_2022_2_0_97
Article receipt date: 24.11.2021
Date of review receipt: 24.12.2021
Date of the editorial board′s decision on the article′s publishing: 10.01.2022
About authors:

S.A. Deryabin1, Head of Laboratory, e-mail: deryabin.sa@misis.ru, ORCID ID: 0000-0003-3165-7032,
E.I. Kondratev1, Laboratory Assistant, 
Rzazade Ulvi Azar ogly1, Senior Lecturer,
I.O. Temkin1, Dr. Sci. (Eng.), Head of Chair,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.

 

For contacts:

S.A. Deryabin, e-mail: deryabin.sa@misis.ru.

Bibliography:

1. Lukichev S. V., Nagovitsin O. V. Digital transformation of mining industry: past, present and future. Gornyi Zhurnal. 2020, no. 9, pp. 13—18. [In Russ]. DOI: 10.17580/gzh.2020.09.01.

2. Vladimirov D. Y., Klebanov A. F., Kuznetsov I. V. Digital transformation of open-pit mining and a new generation of quarry equipment. Russian Mining Industry. 2020, no. 6, pp. 10—12. [In Russ].

3. Klebanov A. F. Automation and robotization of open-pit mining: the experience of digital transformation. Russian Mining Industry. 2020, no. 1, pp. 8—11. [In Russ].

4. Nagovitsyn O. V., Voznyak M. G. Robotic mine management. MIAB. Mining Inf. Anal. Bull. 2021, no. 5(1), pp. 326—335. [In Russ]. DOI: 10.25018/0236_1493_2021_51_0_326.

5. Deryabin S. A., Temkin I. O., Zykov S. V. About some issues of developing Digital Twins for the intelligent process control in quarries. Procedia Computer Science. 2020, no. 176, pp. 3210–3216. DOI: 10.1016/j.procs.2020.09.128.

6. Kulikova E., Ivannikov A. Geographic information systems in geological monitoring during the construction of urban underground structures. Monitoring of Geological Processes and Ecological Condition of the Environment. 2019, no. 19, pp. 1—5. DOI: 10.3997/22144609.201903192.

7. Kongar-Syuryun Ch., Ubysz A., Faradzhov V. Models and algorithms of choice of development technology of deposits when selecting the composition of the backfilling mixture. IOP Conference Series: Earth and Environmental Science. 2021, vol. 684, no. 1, article 012008. DOI: 10.1088/1755-1315/684/1/012008.

8. Temkin I., Myaskov A., Deryabin S., Konov I., Ivannikov A. Design of a digital 3D model of transport–technological environment of open-pit mines based on the common use of telemetric and geospatial information. Sensors. 2021, vol. 21, no. 18, article 6277. DOI: 10.3390/ s21186277.

9. Khayrutdinov A. M., Kongar-Syuryun Ch. B., Kowalik T., Tyulyaeva Yu. S. Stress–strain behavior control in rock mass using different-strength backfill. MIAB. Mining Inf. Anal. Bull. 2020, no. 10, pp. 42–55. DOI: 10.25018/0236-1493-2020-10-0-42-55.

10. Kruchten P. The 4+1 view model of architecture. IEEE Software. 1995, vol. 12, no. 6, pp. 45—50. DOI: 10.1109/52.469759.

11. Vazquez-Ingelmo A., Garcia-Holgado A., Garcia-Penalvo F. J. C4 model in a software engineering subject to ease the comprehension of UML and the software. IEEE Global Engineering Education Conference. 2020, pp. 919—924. DOI: 10.1109/EDUCON45650.2020.9125335.

12. Kozma D., Varga P., Larrinaga F. Dynamic multilevel workflow management concept for industrial IoT systems. IEEE Transactions on Automation Science and Engineering. 2021, vol. 18, no. 3, pp. 1354—1366. DOI: 10.1109/TASE.2020.3004313.

13. Liua C., Su Z., Xu X., Lu Y. Service-oriented industrial internet of things gateway for cloud manufacturing. Robotics and Computer-Integrated Manufacturing. 2022, vol. 73, article 102217. DOI: 10.1016/j.rcim.2021.102217.

14. Resende C., Folgado D., Oliveira J., Franco B., Moreira W., Oliveira Junior A. C., Cavaleiro A., Carvalho R. TIP4.0: industrial internet of things platform for predictive maintenance. Sensors. 2021, vol. 21, no. 14, rticle 4676. DOI: 10.3390/s21144676.

15. Temkin I. O., Klebanov D. A., Deryabin S. A., Konov I. S. Construction of intelligent geoinformation system for a mine using forecasting analytics techniques. MIAB. Mining Inf. Anal. Bull. 2020, no. 3, pp. 114–125. [In Russ]. DOI: 10.25018/0236-1493-2020-3-0-114-125.

16. Zaytseva E., Agafonov V. The concept of establishing a digital industrial enterprise in the cement industry. Materials of the International Conference «Scientific Research of the SCO Countries: Synergy and Integration». Beijing, 2019, pp. 12—18.

17. Sahal R., Breslin J. G., Ali M. I. Big data and stream processing platforms for industry 4.0 requirements mapping for a predictive maintenance use case. Journal of Manufacturing Systems. 2020, vol. 54, pp. 138—151. DOI: 10.1016/j.jmsy.2019.11.004.

18. Martínez P. L., Dintén R., Drake J. M., Zorrilla M. A big data-centric architecture metamodel for Industry 4.0. Future Generation Computer Systems. 2021, vol. 125, pp. 263—284. DOI: 10.1016/j.future.2021.06.020.

19. Vostrikov A. V., Prokofeva E. N., Goncharenko S. N., Gribanov I. V. Analytical modeling for the modern mining industry. Eurasian Mining. 2019, no. 2, pp. 30–35. DOI: 10.17580/ em.2019.02.07.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.