Methane flow rate patterns in mixed-type degassing of coal seam during mining

On the basis of modern theory of gas flow in a manmade porous environment created by impulse plasma treatment of coal seam and from the analysis of actual coal seam gas drainage data, it is recommended to use a mixed-type method of stage-by-stage reduction in coal seam methane content using surface and underground boreholes. The conditions of the mixedtype method of coal seam methane drainage without decrease in the longwall mining equipment productivity and at reduced downtime because of gas emission are justified. Efficiency of the mixed-type methane drainage was estimated using statistical data processing and analysis of in-situ measurement data obtained in 24 operating boreholes within four years. The main research findings are the found dependences between the methane flow rate and time of formation of the flow channels in coal seams: methane flow rate grows in the early period of operation of drainage boreholes and, then, after reaching a maximum, methane emission gradually lowers. Efficiency of the mixed-type coal seam methane drainage method including pre-mine drainage via surface borehole drilling for impulse plasma treatment of coal seam and via directional drilling of holes from underground roadways is validated. The developed approach features the synergistic effect of impulse plasma treatment of coal seams using surface boreholes and the three times reduction in the directional drilling density in the areas of the pre-mine degassing.

Keywords: data analysis, fluid pressure, methane flow rate, gas drainage, impulse plasma treatment, underground roadways, coal seam, borehole.
For citation:

Fryanov V. N., Pavlova L. D., Isachenko A. A., Kornev E. S. Methane flow rate patterns in mixed-type degassing of coal seam during mining. MIAB. Mining Inf. Anal. Bull. 2022;(9):109-119. [In Russ]. DOI: 10.25018/0236_1493_2022_9_0_109.

Acknowledgements:

The study was supported by the Russian Foundation for Basic Research and by the Kemerovo Region, Project No. 20-41-420004.

Issue number: 9
Year: 2022
Page number: 109-119
ISBN: 0236-1493
UDK: 622.817.4
DOI: 10.25018/0236_1493_2022_9_0_109
Article receipt date: 21.01.2022
Date of review receipt: 11.07.2022
Date of the editorial board′s decision on the article′s publishing: 10.08.2022
About authors:

V.N. Fryanov1, Dr. Sci. (Eng.), Professor, Head of Chair, e-mail: zzz338@rdtc.ru, ORCID ID: 0000-0001-6803-458X,
L.D. Pavlova1, Dr. Sci. (Eng.), Professor, Director, Institute of Computer Technologies and Automated Systems, e-mail: ld_pavlova@mail.ru, ORCID ID: 0000-0002-2480-8165,
A.A. Isachenko, Cand. Sci. (Eng.), Deputy Chief Engineer of Technology, Branch Mine «Erunakovskaya-VIII» JSC «OUK «Yuzhkuzbassugol», 654006, Novokuznetsk, Russia, e-mail: aleksey.isachenko@evraz.com, 
E.S. Kornev1, Cand. Sci. (Eng.), Assistant Professor, e-mail: ekornev@yandex.ru, ORCID ID: 0000-0002-1811-6007,
1 Siberian State Industrial University (SibSIU), 654007, Novokuznetsk, Russia,

 

For contacts:

E.S. Kornev, e-mail: ekornev@yandex.ru.

Bibliography:

1. Zaburdyaev V. S., Zakharov V. N., Artem'ev V. B., Yasyuchenya S. V. Shakhtnyy metan: problemy izvlecheniya i utilizatsii [Coal mine methane: problems of extraction and recycling], Moscow, «Gornoe delo» OOO «Kimmeriyskiy tsentr», 2014, 256 p.

2. Kachurin N. M., Vorob'jov S. A., Kachurin A. N. Forecast of methane release from the surface of an outcrop of a coal seam into a development working at a high rate of penetration. Gornyi Zhurnal. 2014, no. 4, pp. 70—73. [In Russ].

3. Kolesnichenko E. A., Artem'ev V. B., Kolesnichenko I. E. Vnezapnye vybrosy metana: teoreticheskie osnovy [Methane bursts: theoretical foundations], Moscow, «Gornoe delo» OOO «Kimmeriyskiy tsentr», 2013, 232 p.

4. Kachurin N. M., Ermakov A. Yu., Senkus Val. V. Aerogazodinamika ochistnykh i podgotovitel'nykh uchastkov pri otrabotke moshchnykh pologikh plastov [Aerogasdynamics of treatment and preparation areas during the development of thick shallow seams], Kemerovo, AI «Kuzbassvuzizdat», 2017, 287 p.

5. Fan C., Li S., Luo M., Mingkun W. Du, Yang Z. Coal and gas outburst dynamic system. International Journal of Mining Science and Technology. 2017, vol. 27, no. 1, pp. 49—55.

6. Feng Gao, Yi Xue, Yanan Gao, Zhizhen Zhang, Teng Teng, Xin Liang Fully coupled thermo-hydro-mechanical model for extraction of coal seam gas with slotted boreholes. Journal of Natural Gas Science and Engineering. 2016, vol. 31, pp. 226—235.

7. Karkashadze G. G., Mazanik E. V., Pashhenkov P. N. Results of determining reservoir pressure, gas permeability and parameters of sorption of a coal seam based on the results of mine measurements of methane efflux from short wells. MIAB. Mining Inf. Anal. Bull. 2016, no. 9, pp. 259—264. [In Russ].

8. Imgrund T., Shalashinskij A. Directional drilling is a new technology to improve the efficiency of preliminary degassing in Russian coal mines. Gljukauf Majning Report. 2015, no. 1, pp. 16—19. [In Russ].

9. Plaksin M. S. Rodin R. I., Al'kov V. I. Gas-kinetic reaction of a coal-methane seam during the creation of cracks in it by means of fluid injection. Naukoemkie tekhnologii razrabotki i ispol'zovaniya mineral'nykh resursov: sbornik nauchnykh statey [High-tech technologies for the development and use of mineral resources: collection of scientific articles], Novokuznetsk, SibGIU, 2017, pp. 63—67.

10. Karkashadze G. G., Slastunov S. V., Ermak G. P., Mazanik E. V. Intensification of degassing of a coal seam based on taking into account its geomechanical state under conditions of unsteady mechanical and sorption deformations. Ugol'. 2015, no. 11, pp. 62—65. [In Russ].

11. Chanyshev A. I. Abdulin I. M. Studies of the elastic, elastoplastic and out-of-limit states of the rock mass near the workings according to measurements at the boundaries. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2019, no. 4, pp. 27—35. [In Russ].

12. Pavlenko M. V. Formation of wave disturbances through wells in a coal mass in the form of vibration vibrations to create gas-conducting cracks in them. MIAB. Mining Inf. Anal. Bull. 2016, no. 5, pp. 36—42. [In Russ].

13. Gent Jiabo, Xu Jiang, Nie Wen, Peng Shoujian, Zhang Chaolin, Luo Xiaohang Regression analysis of major parameters affecting the intensity of coal fnd gas out-bursts in laboratory. International Journal of Mining Science and Technology. 2017, vol. 27, pp. 327—332.

14. Plaksin M. S., Ryabcev A. A. Features of the development of gas-dynamic manifestations during preparatory workings. Naukoemkie tekhnologii razrabotki i ispol'zovaniya mineral'nykh resursov: sbornik nauchnykh statey [High-tech technologies for the development and use of mineral resources: collection of scientific articles], Novokuznetsk, SibGIU, 2017, pp. 67—73.

15. Zhang Y., Underschultz J., Langhi L., Mallants D., Stran J. Numerical modelling of coal seam depressurization during coal seam gas production and its effect on the geomechanical stability of faults and coal beds. International Journal of Coal Geology. 2018, vol. 195, pp. 1—13.

16. Fryanov V. N., Pavlova L. D., Petrova O. A., Shiryaev S. N. Numerical simulation of interaction of methane filtration and rock massif deformation during mining of methane-bearing seams. IOP Conference Series: Earth and Environmental Science. 2019, vol. 377, pp. 1—7. DOI:10.1088/1755-1315/377/1/012036.

17. Cvetkov A. B., Pavlova L. D. Numerical modeling of methane distribution during the development of a suite of seams. V mire nauchnykh otkrytiy. 2014, no. 2.1(50), pp. 815—827. [In Russ].

18. Ageev P. G., Ageev N. P., Ageev D. P., Desjatkin A. S., Pashhenko A. F. Plasma pulse impact — an innovative approach to conventional mining and an uncon-ventional approach to conventional and unconventional hydrocarbon production and early degassing of coal seams. Burenie i neft'. 2016, no. 7-8, pp. 34—40. [In Russ].

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.