Bibliography: 1. Lomonosov G. G., Turygina N. A. Influence of the material composition of ores on processing indicators. Gornyy informatsionno-analiticheskiy byulleten’. 2010, no 2, pp. 314— 320.
2. Bicak O. A technique to determine ore variability in a sulphide ore. Minerals Engineering. 2019. Vol. 142, Article 105927. DOI: 10.1016/j.mineng.2019.105927.
3. Lvov V., Sishchuk J., Chitalov L. Intensification of Bond ball mill work index test through various methods. 17th International Multidisciplinary Scientific GeoConference & EXPO SGEM. 2017. Vol. 17, Issue 11, pp. 857—864. DOI: 10.5593/sgem2017/11/S04.109.
4. Sadeghi M., Hodouin D., Bazin C. Mineral processing plant data reconciliation including mineral mass balance constraints. Minerals Engineering. 2018. Vol. 123, Pp. 117—127. DOI: 10.1016/j.mineng.2018.04.023.
5. Beriashvili A. T., Pikulina V. M. A new approach to solving the problem of variable copper recovery on the example of the Zhezkazgan ore field. Obogashchenie rud. 2018, no 5, pp. 40—44.
6. Taguta J., McFadzean B., O`Connor C. The relationship between the flotation behaviour of a mineral and its surface energy properties using calorimetry. Minerals Engineering. 2019. Vol. 143, Article 105954. DOI: 10.1016/j.mineng.2019.105954.
7. Liu J., Long H., Corin K. C. A study of the effect of grinding environment on the flotation of two copper sulphide ores. Minerals Engineering. 2018. Vol. 122, Pp. 339—345. DOI: 10.1016/j.mineng.2018.03.031.
8. Romanenko S.A., Ushakov E. K. Development of classification ore for copper-zink pyrite-pirrotite priorskoe deposit. Materialy XXIV mezhdunarodnoy nauchno-tekhnicheskoy konferentsii «Nauchnye osnovy i praktika pererabotki rud i tekhnogennogo syr'ya», 9—12 aprelya 2019 g. [Proceedings of the XXIV international scientific and technical conference "Scientific bases and practice of processing ores and technogenic raw materials" April 9—12, 2019. Ekaterinburg, 2019, pp. 66—71.
9. Aleksandrova T. N., Arustamyan K. M., Romanenko S. A. The mathematical analysis methods application in estimation of the international practice of copper-zinc and pyritic-polymetallic ores selective flotation. Obogashchenie rud. 2017, no 5 (371), pp. 21—27.
10. Kheikkinen S., Mashevskiy G. N. Algorithmic framework for the control of the flotation process. Obogashchenie rud. 2005, no 6, pp. 32—37.
11. Aleksandrova T., Romanenko S., Arastumian K. Electrochemistry research of preparation slurry before intermediate flotation for sulphide-polimetallic ores. 17th International Multidisciplinary Scientific GeoConference & EXPO SGEM. 2017. Vol. 17. No 11. Pp. 841—848.
12. Kokhonen T. Assotsiativnaya pamyat' [Associative memory], Moscow, Mir, 1980. 239 p.
13. Kokhonen T. Samoorganizuyushchiesya karty: Adaptivnye i intellektual'nye sistemy [Self-organizing maps: Adaptive and intelligent systems], Moscow, BINOM. Laboratoriya znaniy, 2010. 655 p.
14. Romanenko S.A. Effectiveness of multi-sensor ionometry systems and neural network modeling methods application in flotation processes laboratory studies. Obogashchenie rud. 2013, no 1, pp. 18—22.
15. Elektronnyy uchebnik po statistike [Electronic textbook on statistics] / StatSoft, available at: http://statsoft.ru/home/textbook/default.htm (accessed 20.07.2018). [In Russ].