Accident risk monitoring in underground space development

Underground construction calls for specific approaches to development of underground space considering a variety of complicating factors. These approaches should to the full extent take into account: the dynamic and multivariate geological and hydrogeological conditions, the exclusive ecological and occupational safety standards, the necessity and expedience of advanced construction technologies and their implementation quality control. It is required to execute the accident risk monitoring in underground construction, aimed at the diagnostics of ‘failures’ which arise from errors of personnel, in case of deviation from the assumed technology or in faulty operation of equipment, and at the estimate of ‘maximal hypothetical accidents’. This article offers assessment of causes of emergencies, describes the accident risk monitoring structure in underground construction, and shows the monitoring objectives and execution sequence. The basic methods and goals of the accident risk monitoring are specified. The accident risk monitoring should represent a component of the ecological and occupational safety control in underground construction, and should provide the preliminary risk assessment, the estimate of off-normal situation dynamics and their after-effect analysis. All monitoring efforts should be aimed at the enhancement of ecological and occupational safety and at the minimization of risks. The ultimate objective of the risk management in this case is the science-based supervision of underground construction on the ground of accident risk monitoring and subsequent modeling in the multiparametric construction technology–equipment–personnel–environment system. Here, the monitoring becomes an interactive tool of the ecological and occupational safety management in development of underground space.

Keywords: monitoring, accident risk prediction, safety declaration, emergency, multiparametric system.
For citation:

Kulikova E. Yu., Konyukhov D. S. Accident risk monitoring in underground space development. MIAB. Mining Inf. Anal. Bull. 2022;(1):97-103. [In Russ]. DOI: 10.25018/0236_1493_2022_1_0_97.

Issue number: 1
Year: 2022
Page number: 97-103
ISBN: 0236-1493
UDK: 624.1
DOI: 10.25018/0236_1493_2022_1_0_97
Article receipt date: 22.10.2021
Date of review receipt: 24.11.2021
Date of the editorial board′s decision on the article′s publishing: 10.12.2021
About authors:

E.Yu. Kulikova1, Dr. Sci. (Eng.), Professor, e-mail:,
D.S. Konyukhov1, Cand. Sci. (Eng.), Assistant Professor, e-mail:,
1 National University of Science and Technology «MISiS», 119049, Moscow, Russia.


For contacts:

E.Yu. Kulikova, e-mail:


1. Skopintseva O. V., Balovtsev S. V. Air quality control in coal mines based on gas monitoring statistics. MIAB. Mining Inf. Anal. Bull. 2021, no. 1, pp. 78—89. [In Russ]. DOI: 10.25018/0236-1493-2021-1-0-78-89.

2. Garber V. A. Abnormal situations at underground transport facilities. Podzemnye gorizonty. 2018, no. 16, pp. 20—25. [In Russ].

3. Perelmuter A. V., Slivker V. I. Improving the quality of design justifications of projects. Bst: byulleten' stroitel'noy tekhniki. 2005, no. 10, pp. 59—62. [In Russ].

4. Eremin A. K., Mukharitsin E. S. The causes of the risks of emergency collapse of buildings and structures. Georisk. 2009, no. 3, pp. 54—55. [In Russ].

5. Kaufman L. L., Lysikov B. A. Geotekhnicheskie riski v podzemnom stroitel'stve (obzor zarubezhnogo opyta) [Geotechnical risks in underground construction (review of foreign experience)], Donetsk, Nord-Press, 2009, 362 p.

6. Sukhanov D. A. The search for risk. Some aspects of risk assessment of production facilities in the industrial safety and labor protection management system. Bezopasnost' i okhrana truda. 2016, no. 1, pp. 17—23. [In Russ].

7. Bukhgalter E. B. Ekologiya gazovogo kompleksa [Ecology of the gas complex], Moscow, Nauchnyy mir, 2007, 382 p.

8. Karakeyan V. I., Sevryukova E. A. Nadzor i kontrol' v sfere bezopasnosti: uchebnik dlya akademicheskogo bakalavriata [Supervision and control in the field of security: textbook for academic bachelor's degree], Moscow, Izd-vo «Yurayt», 2019, 397 p.

9. Podavalov Yu. A. Ekologiya neftegazovogo proizvodstva [Ecology of oil and gas production], Moscow, Infra-Inzheneriya, 2010, 416 p.

10. Zinovieva O. M., Kuznetsov D. S., Merkulova A. M., Smirnova N. A. Digitalization of industrial safety management systems in mining. MIAB. Mining Inf. Anal. Bull. 2021, no. 2-1, pp. 113—123. [In Russ]. DOI: 10.25018/0236-1493-2021-21-0-113-123.

11. Potapova E. V. Typology of metro structures for the tasks of geotechnical risk classification. Mining Science and Technology (Russia). 2021, no. 6, pp. 52—60. [In Russ]. DOI: 10.17073/2500-0632-2021-1-52-60.

12. Farràs T. O., Abad D. S., Cámara R. J., Winterbarg R. Solving the сhallenges of the Santoña-Laredo general interceptor collector. Proceedings of the World Tunnel Congress 2017 — Surface challenges — Underground solutions. Bergen, Norway. 2017.

13. Hongjun W. Earth human settlement ecosystem and underground space research. Procedia Engineering. 2016, vol. 165, pp. 765—781. DOI: 10.1016/j.proeng.2016.11.774.

14. Kim D. Y., Farrokh E., Song M. K., Hyun K. S. Cutting tool wear evaluation for soft ground TBMs. Proceedings of the World Tunnel Congress 2017 —Surface challenges — Underground solutions. Bergen, Norway. 2017.

15. Kuepferle J., Roetteger A., Thesen W., Alber M. Wear prediction for soft-ground tunneling tools — a new approach regarding the dominant influencing factors in the tribological system of tunneling tools. Proceedings of the World Tunnel Congress 2017 —Surface challenges — Underground solutions. Bergen, Norway. 2017.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.