Satellite-based identification of land objects using nonorthogonal representation of source data

The article discusses theory of satellite image representation on non-rectangular lattice and feasibility of this approach. The background of the expediency and essentiality of hexagonal and triangular lattices in satellite image processing is presented. The information capacities of images are examined, and the advantages/disadvantages of nonorthogonal representation of spatial information are demonstrated. A new approach is proposed to detection and coding of an object form in a black-and-white contrast image based on heuristics. It is possible to use the proposed approach together with the satellite data in open access. A case-study of the approach application to a specific satellite image is presented. The same image is used to describe formation of informative attributes for the further identification of objects and construction of the object form matrix. The hexagonal and triangular lattice representations allow software implementation and circuit designing in computer vision engineering for robotics. The recommendations on using the nonorthogonal data representation are given. This approach is also applicable to tracing boundaries of mine objects, for instance, in common mineral mining.

Keywords: mathematics of lattices, binary image, elementary vector, information capacity of attribute, computer vision, nonorthogonal description, satellite-based identification, heuristics.
For citation:

Kramarov S. O., Mityasova O.Yu., Khramov V. V. Satellite-based identification of land objects using nonorthogonal representation of source data. MIAB. Mining Inf. Anal. Bull. 2021;(4):154-166. [In Russ]. DOI: 10.25018/0236_1493_2021_4_0_154.


The study was performed under state contract between the Khanty-Mansi Autonomous Area–Yugra and the Surgut State University

Issue number: 4
Year: 2021
Page number: 154-166
ISBN: 0236-1493
UDK: 332+528
DOI: 10.25018/0236_1493_2021_4_0_154
Article receipt date: 13.05.2020
Date of review receipt: 30.10.2020
Date of the editorial board′s decision on the article′s publishing: 10.03.2021
About authors:

S.O. Kramarov1, Dr. Sci. (Phys. Mathem.), Professor, Chief Researcher, e-mail:,
O.Yu. Mityasova1, Member of the Temporary Research Team,
V.V. Khramov, Cand. Sci. (Eng.), Assistant Professor, Leading Researcher, e-mail:, Southern University (Institute of Management, Business and Law), Rostov-on-Don, 344068, Russia,
1 Surgut State University (SurSU), Scientific and Educational Center, 628412, Surgut, Khanty-Mansiysk Autonomous Okrug–Ugra, Russia.


For contacts:

S.O. Kramarov, e-mail:


1. Temkin I. O., Klebanov D. A., Deryabin S. A., Konov I. S. Construction of intelligent geoinformation system for a mine using forecasting analytics techniques. MIAB. Mining Inf. Anal. Bull. 2020, no 3, pp. 114—125. [In Russ]. DOI: 10.25018/0236-1493-2020-3-0-114-125.

2. Akperov I. G., Kramarov S. O., Khramov V. V., Mityasova O. Yu., Povkh V. I. Patent RU 2640331, 27.12.2017.

3. Farahbakhsh E., Chandra R., Olierook H. K.H., Scalzo R., Clark C., Reddy S. M., Muller R. D. Computer vision-based framework for extracting geological lineaments from optical remote sensing data. International Journal of Remote Sensing. 2020. Vol. 41. No 5. Pp. 1760— 1787. DOI: 10.1080/01431161.2019.1674462.

4. Mayorov V. D., Khramov V. V. Heuristic ways of contour coding of models of infor-mation objects in robot vision. Vestnik Rostovskogo gosudarstvennogo universiteta putey soobshcheniya. 2014, no 1, pp. 62—69. [In Russ].

5. Freeman H. On the digital-computer classification of geometric line pattern. Proceedings of the National Electronics Conference. 1962. No 18. Pp. 312—324.

6. Ginzburg M. M., Putyatin E. P. Comparative analysis of rectangular and hexagonal lattices for curve discretization. Bionika intellekta. 2012, no 2(79), pp. 13—18. [In Russ].

7. Визильтер Ю. В., Желтов С. Ю., Бондаренко А. В., Ососков М. В., Моржин А. В. Обработка и анализ изображений в задачах машинного зрения: Курс лекций и практических занятий], Moscow, Физматкнига, 2010, 672 p.

8. Kramarov S. O., Kosenok S. M., Khramov V.V. Intellectual analysis of object contours. Тechnical vision of robots. 2nd World Conference on Robotics and Artificial Intelligence. 2019. Osaka. P. 24.

9. Furman Ya.A., Krevetskiy A. V., Peredreev A. K., Rozhentsov A. A., Khafizov R. G., Egoshina I. L., Leukhin A. N. Vvedenie v konturnyy analiz: prilozhenie k obrabotke izobrazheniy i signalov [Introduction to contour analysis; Applications for image and signal processing], Moscow, Fizmatlit, 2002, 592 p.

10. Kramarov S. O., Khramov V. V., Temkin I. O. The principles of formation of united geoinformational space based on fuzzy triangulation. Procedia Computer Science. 2017. Vol. 120. Pp. 835—843.

11. Singhal A., Goen A., Mohapatrara T. T. Design and implementation of fast fourier transform (FFT) using VHDL code. International Journal of Emerging Research in Management & Technology. 2017. Vol. 6. No 8. Pp. 268—272. DOI: 10.23956/ijermt.v6i8.150.

12. Falsaperla S., Hammer C., Langer H. Advantages and pitfalls of pattern recognition selected cases in geophysics. Amsterdam: Elsevier, 2020, 330 p.

13. Nel A. L. Hexagonal image processing. COMSIG 1989 Proceedings. Southern African Conference on Communications and Signal Processing. New York: Institute of Electrical and Electronics Engineers (IEEE). 1989. Pp. 109—113.

14. Ehrhardt J. C. Hexagonal fast fourier transform with rectangular output. IEEE Transactions on Signal Processing. 1993. Vol. 41. No 3. Pp. 1469—1472. DOI: 10.1109/78.205759.

15. Mersereau R. M. A two-dimensional FFT for hexagonally sampled data. Digital signal processing. London: Academic Press, 1980. pp. 93–101.

16. Borisoglebskiy D. A., Chepin E. V. Improved approach to the vectorization problem of contours in images. Applied informatics. 2013, no 2 (44), pp. 89—93. [In Russ].

17. Yu Wang, Xiaofei Wang, Junfan Jian Remote sensing landslide recognition based on convolutional neural network. Mathematical Problems in Engineering. 2019. No 1. Pp. 1—12. DOI 10.1155/2019/8389368.

18. Kaplunov D. R., Mel'nik V. V., Ryl'nikova M. V. Kompleksnoe osvoenie nedr [Complex development of mineral resources]. Tula, TulGU, 2016, 333 p.

19. Kuznetsov Yu. N., Stadnik D. A., Stadnik N. M., Volkova Yu. V. Theoretical bases of formation and implementation of targeted-oriented information base for aided design process of mine. MIAB. Mining Inf. Anal. Bull. 2016, no 1, pp. 77—87. [In Russ]

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.